123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233 |
- /* The MIT License
- *
- * Copyright (c) 2010 Intel Corporation.
- * All rights reserved.
- *
- * Based on the convexdecomposition library from
- * <http://codesuppository.googlecode.com> by John W. Ratcliff and Stan Melax.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- */
- using System;
- using System.Collections.Generic;
- using System.Text;
- namespace OpenSim.Region.PhysicsModules.ConvexDecompositionDotNet
- {
- public static class Concavity
- {
- // compute's how 'concave' this object is and returns the total volume of the
- // convex hull as well as the volume of the 'concavity' which was found.
- public static float computeConcavity(List<float3> vertices, List<int> indices, ref float4 plane, ref float volume)
- {
- float cret = 0f;
- volume = 1f;
- HullResult result = new HullResult();
- HullDesc desc = new HullDesc();
- desc.MaxFaces = 256;
- desc.MaxVertices = 256;
- desc.SetHullFlag(HullFlag.QF_TRIANGLES);
- desc.Vertices = vertices;
- HullError ret = HullUtils.CreateConvexHull(desc, ref result);
- if (ret == HullError.QE_OK)
- {
- volume = computeMeshVolume2(result.OutputVertices, result.Indices);
- // ok..now..for each triangle on the original mesh..
- // we extrude the points to the nearest point on the hull.
- List<CTri> tris = new List<CTri>();
- for (int i = 0; i < result.Indices.Count / 3; i++)
- {
- int i1 = result.Indices[i * 3 + 0];
- int i2 = result.Indices[i * 3 + 1];
- int i3 = result.Indices[i * 3 + 2];
- float3 p1 = result.OutputVertices[i1];
- float3 p2 = result.OutputVertices[i2];
- float3 p3 = result.OutputVertices[i3];
- CTri t = new CTri(p1, p2, p3, i1, i2, i3);
- tris.Add(t);
- }
- // we have not pre-computed the plane equation for each triangle in the convex hull..
- float totalVolume = 0;
- List<CTri> ftris = new List<CTri>(); // 'feature' triangles.
- List<CTri> input_mesh = new List<CTri>();
- for (int i = 0; i < indices.Count / 3; i++)
- {
- int i1 = indices[i * 3 + 0];
- int i2 = indices[i * 3 + 1];
- int i3 = indices[i * 3 + 2];
- float3 p1 = vertices[i1];
- float3 p2 = vertices[i2];
- float3 p3 = vertices[i3];
- CTri t = new CTri(p1, p2, p3, i1, i2, i3);
- input_mesh.Add(t);
- }
- for (int i = 0; i < indices.Count / 3; i++)
- {
- int i1 = indices[i * 3 + 0];
- int i2 = indices[i * 3 + 1];
- int i3 = indices[i * 3 + 2];
- float3 p1 = vertices[i1];
- float3 p2 = vertices[i2];
- float3 p3 = vertices[i3];
- CTri t = new CTri(p1, p2, p3, i1, i2, i3);
- featureMatch(t, tris, input_mesh);
- if (t.mConcavity > 0.05f)
- {
- float v = t.getVolume();
- totalVolume += v;
- ftris.Add(t);
- }
- }
- SplitPlane.computeSplitPlane(vertices, indices, ref plane);
- cret = totalVolume;
- }
- return cret;
- }
- public static bool featureMatch(CTri m, List<CTri> tris, List<CTri> input_mesh)
- {
- bool ret = false;
- float neardot = 0.707f;
- m.mConcavity = 0;
- for (int i = 0; i < tris.Count; i++)
- {
- CTri t = tris[i];
- if (t.samePlane(m))
- {
- ret = false;
- break;
- }
- float dot = float3.dot(t.mNormal, m.mNormal);
- if (dot > neardot)
- {
- float d1 = t.planeDistance(m.mP1);
- float d2 = t.planeDistance(m.mP2);
- float d3 = t.planeDistance(m.mP3);
- if (d1 > 0.001f || d2 > 0.001f || d3 > 0.001f) // can't be near coplaner!
- {
- neardot = dot;
- t.raySect(m.mP1, m.mNormal, ref m.mNear1);
- t.raySect(m.mP2, m.mNormal, ref m.mNear2);
- t.raySect(m.mP3, m.mNormal, ref m.mNear3);
- ret = true;
- }
- }
- }
- if (ret)
- {
- m.mC1 = m.mP1.Distance(m.mNear1);
- m.mC2 = m.mP2.Distance(m.mNear2);
- m.mC3 = m.mP3.Distance(m.mNear3);
- m.mConcavity = m.mC1;
- if (m.mC2 > m.mConcavity)
- m.mConcavity = m.mC2;
- if (m.mC3 > m.mConcavity)
- m.mConcavity = m.mC3;
- }
- return ret;
- }
- private static float det(float3 p1, float3 p2, float3 p3)
- {
- return p1.x * p2.y * p3.z + p2.x * p3.y * p1.z + p3.x * p1.y * p2.z - p1.x * p3.y * p2.z - p2.x * p1.y * p3.z - p3.x * p2.y * p1.z;
- }
- public static float computeMeshVolume(List<float3> vertices, List<int> indices)
- {
- float volume = 0f;
- for (int i = 0; i < indices.Count / 3; i++)
- {
- float3 p1 = vertices[indices[i * 3 + 0]];
- float3 p2 = vertices[indices[i * 3 + 1]];
- float3 p3 = vertices[indices[i * 3 + 2]];
- volume += det(p1, p2, p3); // compute the volume of the tetrahedran relative to the origin.
- }
- volume *= (1.0f / 6.0f);
- if (volume < 0f)
- return -volume;
- return volume;
- }
- public static float computeMeshVolume2(List<float3> vertices, List<int> indices)
- {
- float volume = 0f;
- float3 p0 = vertices[0];
- for (int i = 0; i < indices.Count / 3; i++)
- {
- float3 p1 = vertices[indices[i * 3 + 0]];
- float3 p2 = vertices[indices[i * 3 + 1]];
- float3 p3 = vertices[indices[i * 3 + 2]];
- volume += tetVolume(p0, p1, p2, p3); // compute the volume of the tetrahedron relative to the root vertice
- }
- return volume * (1.0f / 6.0f);
- }
- private static float tetVolume(float3 p0, float3 p1, float3 p2, float3 p3)
- {
- float3 a = p1 - p0;
- float3 b = p2 - p0;
- float3 c = p3 - p0;
- float3 cross = float3.cross(b, c);
- float volume = float3.dot(a, cross);
- if (volume < 0f)
- return -volume;
- return volume;
- }
- }
- }
|