123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167 |
- ///////////////////////////////////////////////////////////////////////////////
- // Copyright 2014 Anton Bikineev
- // Copyright 2014 Christopher Kormanyos
- // Copyright 2014 John Maddock
- // Copyright 2014 Paul Bristow
- // Distributed under the Boost
- // Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- //
- #ifndef BOOST_MATH_HYPERGEOMETRIC_RATIONAL_HPP
- #define BOOST_MATH_HYPERGEOMETRIC_RATIONAL_HPP
- #include <array>
- namespace boost{ namespace math{ namespace detail{
- // Luke: C ------- SUBROUTINE R1F1P(AP, CP, Z, A, B, N) ---------
- // Luke: C --- RATIONAL APPROXIMATION OF 1F1( AP ; CP ; -Z ) ----
- template <class T, class Policy>
- inline T hypergeometric_1F1_rational(const T& ap, const T& cp, const T& zp, const Policy& )
- {
- BOOST_MATH_STD_USING
- static const T zero = T(0), one = T(1), two = T(2), three = T(3);
- // Luke: C ------------- INITIALIZATION -------------
- const T z = -zp;
- const T z2 = z / two;
- T ct1 = ap * (z / cp);
- T ct2 = z2 / (one + cp);
- T xn3 = zero;
- T xn2 = one;
- T xn1 = two;
- T xn0 = three;
- T b1 = one;
- T a1 = one;
- T b2 = one + ((one + ap) * (z2 / cp));
- T a2 = b2 - ct1;
- T b3 = one + ((two + b2) * (((two + ap) / three) * ct2));
- T a3 = b3 - ((one + ct2) * ct1);
- ct1 = three;
- const unsigned max_iterations = boost::math::policies::get_max_series_iterations<Policy>();
- T a4 = T(0), b4 = T(0);
- T result = T(0), prev_result = a3 / b3;
- for (unsigned k = 2; k < max_iterations; ++k)
- {
- // Luke: C ----- CALCULATION OF THE MULTIPLIERS -----
- // Luke: C ----------- FOR THE RECURSION ------------
- ct2 = (z2 / ct1) / (cp + xn1);
- const T g1 = one + (ct2 * (xn2 - ap));
- ct2 *= ((ap + xn1) / (cp + xn2));
- const T g2 = ct2 * ((cp - xn1) + (((ap + xn0) / (ct1 + two)) * z2));
- const T g3 = ((ct2 * z2) * (((z2 / ct1) / (ct1 - two)) * ((ap + xn2)) / (cp + xn3))) * (ap - xn2);
- // Luke: C ------- THE RECURRENCE RELATIONS ---------
- // Luke: C ------------ ARE AS FOLLOWS --------------
- b4 = (g1 * b3) + (g2 * b2) + (g3 * b1);
- a4 = (g1 * a3) + (g2 * a2) + (g3 * a1);
- prev_result = result;
- result = a4 / b4;
- // condition for interruption
- if ((fabs(result) * boost::math::tools::epsilon<T>()) > fabs(result - prev_result) / fabs(result))
- break;
- b1 = b2; b2 = b3; b3 = b4;
- a1 = a2; a2 = a3; a3 = a4;
- xn3 = xn2;
- xn2 = xn1;
- xn1 = xn0;
- xn0 += 1;
- ct1 += two;
- }
- return result;
- }
- // Luke: C ----- SUBROUTINE R2F1P(AB, BP, CP, Z, A, B, N) -------
- // Luke: C -- RATIONAL APPROXIMATION OF 2F1( AB , BP; CP ; -Z ) -
- template <class T, class Policy>
- inline T hypergeometric_2F1_rational(const T& ap, const T& bp, const T& cp, const T& zp, const unsigned n, const Policy& )
- {
- BOOST_MATH_STD_USING
- static const T one = T(1), two = T(2), three = T(3), four = T(4),
- six = T(6), half_7 = T(3.5), half_3 = T(1.5), forth_3 = T(0.75);
- // Luke: C ------------- INITIALIZATION -------------
- const T z = -zp;
- const T z2 = z / two;
- T sabz = (ap + bp) * z;
- const T ab = ap * bp;
- const T abz = ab * z;
- const T abz1 = z + (abz + sabz);
- const T abz2 = abz1 + (sabz + (three * z));
- const T cp1 = cp + one;
- const T ct1 = cp1 + cp1;
- T b1 = one;
- T a1 = one;
- T b2 = one + (abz1 / (cp + cp));
- T a2 = b2 - (abz / cp);
- T b3 = one + ((abz2 / ct1) * (one + (abz1 / ((-six) + (three * ct1)))));
- T a3 = b3 - ((abz / cp) * (one + ((abz2 - abz1) / ct1)));
- sabz /= four;
- const T abz1_div_4 = abz1 / four;
- const T cp1_inc = cp1 + one;
- const T cp1_mul_cp1_inc = cp1 * cp1_inc;
- std::array<T, 9u> d = {{
- ((half_7 - ab) * z2) - sabz,
- abz1_div_4,
- abz1_div_4 - (two * sabz),
- cp1_inc,
- cp1_mul_cp1_inc,
- cp * cp1_mul_cp1_inc,
- half_3,
- forth_3,
- forth_3 * z
- }};
- T xi = three;
- T a4 = T(0), b4 = T(0);
- for (unsigned k = 2; k < n; ++k)
- {
- // Luke: C ----- CALCULATION OF THE MULTIPLIERS -----
- // Luke: C ----------- FOR THE RECURSION ------------
- T g3 = (d[2] / d[7]) * (d[1] / d[5]);
- d[1] += d[8] + sabz;
- d[2] += d[8] - sabz;
- g3 *= d[1] / d[6];
- T g1 = one + (((d[1] + d[0]) / d[6]) / d[3]);
- T g2 = (d[1] / d[4]) / d[6];
- d[7] += two * d[6];
- ++d[6];
- g2 *= cp1 - (xi + ((d[2] + d[0]) / d[6]));
- // Luke: C ------- THE RECURRENCE RELATIONS ---------
- // Luke: C ------------ ARE AS FOLLOWS --------------
- b4 = (g1 * b3) + (g2 * b2) + (g3 * b1);
- a4 = (g1 * a3) + (g2 * a2) + (g3 * a1);
- b1 = b2; b2 = b3; b3 = b4;
- a1 = a2; a2 = a3; a3 = a4;
- d[8] += z2;
- d[0] += two * d[8];
- d[5] += three * d[4];
- d[4] += two * d[3];
- ++d[3];
- ++xi;
- }
- return a4 / b4;
- }
- } } } // namespaces
- #endif // BOOST_MATH_HYPERGEOMETRIC_RATIONAL_HPP
|