/////////////////////////////////////////////////////////////////////////////// // Copyright 2014 Anton Bikineev // Copyright 2014 Christopher Kormanyos // Copyright 2014 John Maddock // Copyright 2014 Paul Bristow // Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef BOOST_MATH_HYPERGEOMETRIC_RATIONAL_HPP #define BOOST_MATH_HYPERGEOMETRIC_RATIONAL_HPP #include namespace boost{ namespace math{ namespace detail{ // Luke: C ------- SUBROUTINE R1F1P(AP, CP, Z, A, B, N) --------- // Luke: C --- RATIONAL APPROXIMATION OF 1F1( AP ; CP ; -Z ) ---- template inline T hypergeometric_1F1_rational(const T& ap, const T& cp, const T& zp, const Policy& ) { BOOST_MATH_STD_USING static const T zero = T(0), one = T(1), two = T(2), three = T(3); // Luke: C ------------- INITIALIZATION ------------- const T z = -zp; const T z2 = z / two; T ct1 = ap * (z / cp); T ct2 = z2 / (one + cp); T xn3 = zero; T xn2 = one; T xn1 = two; T xn0 = three; T b1 = one; T a1 = one; T b2 = one + ((one + ap) * (z2 / cp)); T a2 = b2 - ct1; T b3 = one + ((two + b2) * (((two + ap) / three) * ct2)); T a3 = b3 - ((one + ct2) * ct1); ct1 = three; const unsigned max_iterations = boost::math::policies::get_max_series_iterations(); T a4 = T(0), b4 = T(0); T result = T(0), prev_result = a3 / b3; for (unsigned k = 2; k < max_iterations; ++k) { // Luke: C ----- CALCULATION OF THE MULTIPLIERS ----- // Luke: C ----------- FOR THE RECURSION ------------ ct2 = (z2 / ct1) / (cp + xn1); const T g1 = one + (ct2 * (xn2 - ap)); ct2 *= ((ap + xn1) / (cp + xn2)); const T g2 = ct2 * ((cp - xn1) + (((ap + xn0) / (ct1 + two)) * z2)); const T g3 = ((ct2 * z2) * (((z2 / ct1) / (ct1 - two)) * ((ap + xn2)) / (cp + xn3))) * (ap - xn2); // Luke: C ------- THE RECURRENCE RELATIONS --------- // Luke: C ------------ ARE AS FOLLOWS -------------- b4 = (g1 * b3) + (g2 * b2) + (g3 * b1); a4 = (g1 * a3) + (g2 * a2) + (g3 * a1); prev_result = result; result = a4 / b4; // condition for interruption if ((fabs(result) * boost::math::tools::epsilon()) > fabs(result - prev_result) / fabs(result)) break; b1 = b2; b2 = b3; b3 = b4; a1 = a2; a2 = a3; a3 = a4; xn3 = xn2; xn2 = xn1; xn1 = xn0; xn0 += 1; ct1 += two; } return result; } // Luke: C ----- SUBROUTINE R2F1P(AB, BP, CP, Z, A, B, N) ------- // Luke: C -- RATIONAL APPROXIMATION OF 2F1( AB , BP; CP ; -Z ) - template inline T hypergeometric_2F1_rational(const T& ap, const T& bp, const T& cp, const T& zp, const unsigned n, const Policy& ) { BOOST_MATH_STD_USING static const T one = T(1), two = T(2), three = T(3), four = T(4), six = T(6), half_7 = T(3.5), half_3 = T(1.5), forth_3 = T(0.75); // Luke: C ------------- INITIALIZATION ------------- const T z = -zp; const T z2 = z / two; T sabz = (ap + bp) * z; const T ab = ap * bp; const T abz = ab * z; const T abz1 = z + (abz + sabz); const T abz2 = abz1 + (sabz + (three * z)); const T cp1 = cp + one; const T ct1 = cp1 + cp1; T b1 = one; T a1 = one; T b2 = one + (abz1 / (cp + cp)); T a2 = b2 - (abz / cp); T b3 = one + ((abz2 / ct1) * (one + (abz1 / ((-six) + (three * ct1))))); T a3 = b3 - ((abz / cp) * (one + ((abz2 - abz1) / ct1))); sabz /= four; const T abz1_div_4 = abz1 / four; const T cp1_inc = cp1 + one; const T cp1_mul_cp1_inc = cp1 * cp1_inc; std::array d = {{ ((half_7 - ab) * z2) - sabz, abz1_div_4, abz1_div_4 - (two * sabz), cp1_inc, cp1_mul_cp1_inc, cp * cp1_mul_cp1_inc, half_3, forth_3, forth_3 * z }}; T xi = three; T a4 = T(0), b4 = T(0); for (unsigned k = 2; k < n; ++k) { // Luke: C ----- CALCULATION OF THE MULTIPLIERS ----- // Luke: C ----------- FOR THE RECURSION ------------ T g3 = (d[2] / d[7]) * (d[1] / d[5]); d[1] += d[8] + sabz; d[2] += d[8] - sabz; g3 *= d[1] / d[6]; T g1 = one + (((d[1] + d[0]) / d[6]) / d[3]); T g2 = (d[1] / d[4]) / d[6]; d[7] += two * d[6]; ++d[6]; g2 *= cp1 - (xi + ((d[2] + d[0]) / d[6])); // Luke: C ------- THE RECURRENCE RELATIONS --------- // Luke: C ------------ ARE AS FOLLOWS -------------- b4 = (g1 * b3) + (g2 * b2) + (g3 * b1); a4 = (g1 * a3) + (g2 * a2) + (g3 * a1); b1 = b2; b2 = b3; b3 = b4; a1 = a2; a2 = a3; a3 = a4; d[8] += z2; d[0] += two * d[8]; d[5] += three * d[4]; d[4] += two * d[3]; ++d[3]; ++xi; } return a4 / b4; } } } } // namespaces #endif // BOOST_MATH_HYPERGEOMETRIC_RATIONAL_HPP