1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950 |
- ///////////////////////////////////////////////////////////////////////////////
- // Copyright 2018 John Maddock
- // Distributed under the Boost
- // Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- //
- #ifndef BOOST_MATH_HYPERGEOMETRIC_1F1_CF_HPP
- #define BOOST_MATH_HYPERGEOMETRIC_1F1_CF_HPP
- #include <boost/math/tools/fraction.hpp>
- //
- // Evaluation of 1F1 by continued fraction
- // see http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/10/0002/
- //
- // This is not terribly useful, as like the series we're adding a something to 1,
- // so only really useful when we know that the result will be > 1.
- //
- namespace boost { namespace math { namespace detail {
- template <class T>
- struct hypergeometric_1F1_cf_func
- {
- typedef std::pair<T, T> result_type;
- hypergeometric_1F1_cf_func(T a_, T b_, T z_) : a(a_), b(b_), z(z_), k(0) {}
- std::pair<T, T> operator()()
- {
- ++k;
- return std::make_pair(-(((a + k) * z) / ((k + 1) * (b + k))), 1 + ((a + k) * z) / ((k + 1) * (b + k)));
- }
- T a, b, z;
- unsigned k;
- };
- template <class T, class Policy>
- T hypergeometric_1F1_cf(const T& a, const T& b, const T& z, const Policy& pol, const char* function)
- {
- hypergeometric_1F1_cf_func<T> func(a, b, z);
- std::uintmax_t max_iter = boost::math::policies::get_max_series_iterations<Policy>();
- T result = boost::math::tools::continued_fraction_a(func, boost::math::policies::get_epsilon<T, Policy>(), max_iter);
- boost::math::policies::check_series_iterations<T>(function, max_iter, pol);
- return 1 + a * z / (b * (1 + result));
- }
- } } } // namespaces
- #endif // BOOST_MATH_HYPERGEOMETRIC_1F1_BESSEL_HPP
|