/////////////////////////////////////////////////////////////////////////////// // Copyright 2018 John Maddock // Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef BOOST_MATH_HYPERGEOMETRIC_1F1_CF_HPP #define BOOST_MATH_HYPERGEOMETRIC_1F1_CF_HPP #include // // Evaluation of 1F1 by continued fraction // see http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/10/0002/ // // This is not terribly useful, as like the series we're adding a something to 1, // so only really useful when we know that the result will be > 1. // namespace boost { namespace math { namespace detail { template struct hypergeometric_1F1_cf_func { typedef std::pair result_type; hypergeometric_1F1_cf_func(T a_, T b_, T z_) : a(a_), b(b_), z(z_), k(0) {} std::pair operator()() { ++k; return std::make_pair(-(((a + k) * z) / ((k + 1) * (b + k))), 1 + ((a + k) * z) / ((k + 1) * (b + k))); } T a, b, z; unsigned k; }; template T hypergeometric_1F1_cf(const T& a, const T& b, const T& z, const Policy& pol, const char* function) { hypergeometric_1F1_cf_func func(a, b, z); std::uintmax_t max_iter = boost::math::policies::get_max_series_iterations(); T result = boost::math::tools::continued_fraction_a(func, boost::math::policies::get_epsilon(), max_iter); boost::math::policies::check_series_iterations(function, max_iter, pol); return 1 + a * z / (b * (1 + result)); } } } } // namespaces #endif // BOOST_MATH_HYPERGEOMETRIC_1F1_BESSEL_HPP