123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223 |
- // Copyright (c) 2007 John Maddock
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- //
- // This is a partial header, do not include on it's own!!!
- //
- // Contains asymptotic expansions for Bessel J(v,x) and Y(v,x)
- // functions, as x -> INF.
- //
- #ifndef BOOST_MATH_SF_DETAIL_BESSEL_JY_ASYM_HPP
- #define BOOST_MATH_SF_DETAIL_BESSEL_JY_ASYM_HPP
- #ifdef _MSC_VER
- #pragma once
- #endif
- #include <boost/math/special_functions/factorials.hpp>
- namespace boost{ namespace math{ namespace detail{
- template <class T>
- inline T asymptotic_bessel_amplitude(T v, T x)
- {
- // Calculate the amplitude of J(v, x) and Y(v, x) for large
- // x: see A&S 9.2.28.
- BOOST_MATH_STD_USING
- T s = 1;
- T mu = 4 * v * v;
- T txq = 2 * x;
- txq *= txq;
- s += (mu - 1) / (2 * txq);
- s += 3 * (mu - 1) * (mu - 9) / (txq * txq * 8);
- s += 15 * (mu - 1) * (mu - 9) * (mu - 25) / (txq * txq * txq * 8 * 6);
- return sqrt(s * 2 / (constants::pi<T>() * x));
- }
- template <class T>
- T asymptotic_bessel_phase_mx(T v, T x)
- {
- //
- // Calculate the phase of J(v, x) and Y(v, x) for large x.
- // See A&S 9.2.29.
- // Note that the result returned is the phase less (x - PI(v/2 + 1/4))
- // which we'll factor in later when we calculate the sines/cosines of the result:
- //
- T mu = 4 * v * v;
- T denom = 4 * x;
- T denom_mult = denom * denom;
- T s = 0;
- s += (mu - 1) / (2 * denom);
- denom *= denom_mult;
- s += (mu - 1) * (mu - 25) / (6 * denom);
- denom *= denom_mult;
- s += (mu - 1) * (mu * mu - 114 * mu + 1073) / (5 * denom);
- denom *= denom_mult;
- s += (mu - 1) * (5 * mu * mu * mu - 1535 * mu * mu + 54703 * mu - 375733) / (14 * denom);
- return s;
- }
- template <class T, class Policy>
- inline T asymptotic_bessel_y_large_x_2(T v, T x, const Policy& pol)
- {
- // See A&S 9.2.19.
- BOOST_MATH_STD_USING
- // Get the phase and amplitude:
- T ampl = asymptotic_bessel_amplitude(v, x);
- T phase = asymptotic_bessel_phase_mx(v, x);
- BOOST_MATH_INSTRUMENT_VARIABLE(ampl);
- BOOST_MATH_INSTRUMENT_VARIABLE(phase);
- //
- // Calculate the sine of the phase, using
- // sine/cosine addition rules to factor in
- // the x - PI(v/2 + 1/4) term not added to the
- // phase when we calculated it.
- //
- T cx = cos(x);
- T sx = sin(x);
- T ci = boost::math::cos_pi(v / 2 + 0.25f, pol);
- T si = boost::math::sin_pi(v / 2 + 0.25f, pol);
- T sin_phase = sin(phase) * (cx * ci + sx * si) + cos(phase) * (sx * ci - cx * si);
- BOOST_MATH_INSTRUMENT_CODE(sin(phase));
- BOOST_MATH_INSTRUMENT_CODE(cos(x));
- BOOST_MATH_INSTRUMENT_CODE(cos(phase));
- BOOST_MATH_INSTRUMENT_CODE(sin(x));
- return sin_phase * ampl;
- }
- template <class T, class Policy>
- inline T asymptotic_bessel_j_large_x_2(T v, T x, const Policy& pol)
- {
- // See A&S 9.2.19.
- BOOST_MATH_STD_USING
- // Get the phase and amplitude:
- T ampl = asymptotic_bessel_amplitude(v, x);
- T phase = asymptotic_bessel_phase_mx(v, x);
- BOOST_MATH_INSTRUMENT_VARIABLE(ampl);
- BOOST_MATH_INSTRUMENT_VARIABLE(phase);
- //
- // Calculate the sine of the phase, using
- // sine/cosine addition rules to factor in
- // the x - PI(v/2 + 1/4) term not added to the
- // phase when we calculated it.
- //
- BOOST_MATH_INSTRUMENT_CODE(cos(phase));
- BOOST_MATH_INSTRUMENT_CODE(cos(x));
- BOOST_MATH_INSTRUMENT_CODE(sin(phase));
- BOOST_MATH_INSTRUMENT_CODE(sin(x));
- T cx = cos(x);
- T sx = sin(x);
- T ci = boost::math::cos_pi(v / 2 + 0.25f, pol);
- T si = boost::math::sin_pi(v / 2 + 0.25f, pol);
- T sin_phase = cos(phase) * (cx * ci + sx * si) - sin(phase) * (sx * ci - cx * si);
- BOOST_MATH_INSTRUMENT_VARIABLE(sin_phase);
- return sin_phase * ampl;
- }
- template <class T>
- inline bool asymptotic_bessel_large_x_limit(int v, const T& x)
- {
- BOOST_MATH_STD_USING
- //
- // Determines if x is large enough compared to v to take the asymptotic
- // forms above. From A&S 9.2.28 we require:
- // v < x * eps^1/8
- // and from A&S 9.2.29 we require:
- // v^12/10 < 1.5 * x * eps^1/10
- // using the former seems to work OK in practice with broadly similar
- // error rates either side of the divide for v < 10000.
- // At double precision eps^1/8 ~= 0.01.
- //
- BOOST_MATH_ASSERT(v >= 0);
- return (v ? v : 1) < x * 0.004f;
- }
- template <class T>
- inline bool asymptotic_bessel_large_x_limit(const T& v, const T& x)
- {
- BOOST_MATH_STD_USING
- //
- // Determines if x is large enough compared to v to take the asymptotic
- // forms above. From A&S 9.2.28 we require:
- // v < x * eps^1/8
- // and from A&S 9.2.29 we require:
- // v^12/10 < 1.5 * x * eps^1/10
- // using the former seems to work OK in practice with broadly similar
- // error rates either side of the divide for v < 10000.
- // At double precision eps^1/8 ~= 0.01.
- //
- return (std::max)(T(fabs(v)), T(1)) < x * sqrt(tools::forth_root_epsilon<T>());
- }
- template <class T, class Policy>
- void temme_asymptotic_y_small_x(T v, T x, T* Y, T* Y1, const Policy& pol)
- {
- T c = 1;
- T p = (v / boost::math::sin_pi(v, pol)) * pow(x / 2, -v) / boost::math::tgamma(1 - v, pol);
- T q = (v / boost::math::sin_pi(v, pol)) * pow(x / 2, v) / boost::math::tgamma(1 + v, pol);
- T f = (p - q) / v;
- T g_prefix = boost::math::sin_pi(v / 2, pol);
- g_prefix *= g_prefix * 2 / v;
- T g = f + g_prefix * q;
- T h = p;
- T c_mult = -x * x / 4;
- T y(c * g), y1(c * h);
- for(int k = 1; k < policies::get_max_series_iterations<Policy>(); ++k)
- {
- f = (k * f + p + q) / (k*k - v*v);
- p /= k - v;
- q /= k + v;
- c *= c_mult / k;
- T c1 = pow(-x * x / 4, T(k)) / factorial<T>(k, pol);
- g = f + g_prefix * q;
- h = -k * g + p;
- y += c * g;
- y1 += c * h;
- if(c * g / tools::epsilon<T>() < y)
- break;
- }
- *Y = -y;
- *Y1 = (-2 / x) * y1;
- }
- template <class T, class Policy>
- T asymptotic_bessel_i_large_x(T v, T x, const Policy& pol)
- {
- BOOST_MATH_STD_USING // ADL of std names
- T s = 1;
- T mu = 4 * v * v;
- T ex = 8 * x;
- T num = mu - 1;
- T denom = ex;
- s -= num / denom;
- num *= mu - 9;
- denom *= ex * 2;
- s += num / denom;
- num *= mu - 25;
- denom *= ex * 3;
- s -= num / denom;
- // Try and avoid overflow to the last minute:
- T e = exp(x/2);
- s = e * (e * s / sqrt(2 * x * constants::pi<T>()));
- return (boost::math::isfinite)(s) ?
- s : policies::raise_overflow_error<T>("boost::math::asymptotic_bessel_i_large_x<%1%>(%1%,%1%)", nullptr, pol);
- }
- }}} // namespaces
- #endif
|