// Copyright (c) 2007 John Maddock // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // This is a partial header, do not include on it's own!!! // // Contains asymptotic expansions for Bessel J(v,x) and Y(v,x) // functions, as x -> INF. // #ifndef BOOST_MATH_SF_DETAIL_BESSEL_JY_ASYM_HPP #define BOOST_MATH_SF_DETAIL_BESSEL_JY_ASYM_HPP #ifdef _MSC_VER #pragma once #endif #include namespace boost{ namespace math{ namespace detail{ template inline T asymptotic_bessel_amplitude(T v, T x) { // Calculate the amplitude of J(v, x) and Y(v, x) for large // x: see A&S 9.2.28. BOOST_MATH_STD_USING T s = 1; T mu = 4 * v * v; T txq = 2 * x; txq *= txq; s += (mu - 1) / (2 * txq); s += 3 * (mu - 1) * (mu - 9) / (txq * txq * 8); s += 15 * (mu - 1) * (mu - 9) * (mu - 25) / (txq * txq * txq * 8 * 6); return sqrt(s * 2 / (constants::pi() * x)); } template T asymptotic_bessel_phase_mx(T v, T x) { // // Calculate the phase of J(v, x) and Y(v, x) for large x. // See A&S 9.2.29. // Note that the result returned is the phase less (x - PI(v/2 + 1/4)) // which we'll factor in later when we calculate the sines/cosines of the result: // T mu = 4 * v * v; T denom = 4 * x; T denom_mult = denom * denom; T s = 0; s += (mu - 1) / (2 * denom); denom *= denom_mult; s += (mu - 1) * (mu - 25) / (6 * denom); denom *= denom_mult; s += (mu - 1) * (mu * mu - 114 * mu + 1073) / (5 * denom); denom *= denom_mult; s += (mu - 1) * (5 * mu * mu * mu - 1535 * mu * mu + 54703 * mu - 375733) / (14 * denom); return s; } template inline T asymptotic_bessel_y_large_x_2(T v, T x, const Policy& pol) { // See A&S 9.2.19. BOOST_MATH_STD_USING // Get the phase and amplitude: T ampl = asymptotic_bessel_amplitude(v, x); T phase = asymptotic_bessel_phase_mx(v, x); BOOST_MATH_INSTRUMENT_VARIABLE(ampl); BOOST_MATH_INSTRUMENT_VARIABLE(phase); // // Calculate the sine of the phase, using // sine/cosine addition rules to factor in // the x - PI(v/2 + 1/4) term not added to the // phase when we calculated it. // T cx = cos(x); T sx = sin(x); T ci = boost::math::cos_pi(v / 2 + 0.25f, pol); T si = boost::math::sin_pi(v / 2 + 0.25f, pol); T sin_phase = sin(phase) * (cx * ci + sx * si) + cos(phase) * (sx * ci - cx * si); BOOST_MATH_INSTRUMENT_CODE(sin(phase)); BOOST_MATH_INSTRUMENT_CODE(cos(x)); BOOST_MATH_INSTRUMENT_CODE(cos(phase)); BOOST_MATH_INSTRUMENT_CODE(sin(x)); return sin_phase * ampl; } template inline T asymptotic_bessel_j_large_x_2(T v, T x, const Policy& pol) { // See A&S 9.2.19. BOOST_MATH_STD_USING // Get the phase and amplitude: T ampl = asymptotic_bessel_amplitude(v, x); T phase = asymptotic_bessel_phase_mx(v, x); BOOST_MATH_INSTRUMENT_VARIABLE(ampl); BOOST_MATH_INSTRUMENT_VARIABLE(phase); // // Calculate the sine of the phase, using // sine/cosine addition rules to factor in // the x - PI(v/2 + 1/4) term not added to the // phase when we calculated it. // BOOST_MATH_INSTRUMENT_CODE(cos(phase)); BOOST_MATH_INSTRUMENT_CODE(cos(x)); BOOST_MATH_INSTRUMENT_CODE(sin(phase)); BOOST_MATH_INSTRUMENT_CODE(sin(x)); T cx = cos(x); T sx = sin(x); T ci = boost::math::cos_pi(v / 2 + 0.25f, pol); T si = boost::math::sin_pi(v / 2 + 0.25f, pol); T sin_phase = cos(phase) * (cx * ci + sx * si) - sin(phase) * (sx * ci - cx * si); BOOST_MATH_INSTRUMENT_VARIABLE(sin_phase); return sin_phase * ampl; } template inline bool asymptotic_bessel_large_x_limit(int v, const T& x) { BOOST_MATH_STD_USING // // Determines if x is large enough compared to v to take the asymptotic // forms above. From A&S 9.2.28 we require: // v < x * eps^1/8 // and from A&S 9.2.29 we require: // v^12/10 < 1.5 * x * eps^1/10 // using the former seems to work OK in practice with broadly similar // error rates either side of the divide for v < 10000. // At double precision eps^1/8 ~= 0.01. // BOOST_MATH_ASSERT(v >= 0); return (v ? v : 1) < x * 0.004f; } template inline bool asymptotic_bessel_large_x_limit(const T& v, const T& x) { BOOST_MATH_STD_USING // // Determines if x is large enough compared to v to take the asymptotic // forms above. From A&S 9.2.28 we require: // v < x * eps^1/8 // and from A&S 9.2.29 we require: // v^12/10 < 1.5 * x * eps^1/10 // using the former seems to work OK in practice with broadly similar // error rates either side of the divide for v < 10000. // At double precision eps^1/8 ~= 0.01. // return (std::max)(T(fabs(v)), T(1)) < x * sqrt(tools::forth_root_epsilon()); } template void temme_asymptotic_y_small_x(T v, T x, T* Y, T* Y1, const Policy& pol) { T c = 1; T p = (v / boost::math::sin_pi(v, pol)) * pow(x / 2, -v) / boost::math::tgamma(1 - v, pol); T q = (v / boost::math::sin_pi(v, pol)) * pow(x / 2, v) / boost::math::tgamma(1 + v, pol); T f = (p - q) / v; T g_prefix = boost::math::sin_pi(v / 2, pol); g_prefix *= g_prefix * 2 / v; T g = f + g_prefix * q; T h = p; T c_mult = -x * x / 4; T y(c * g), y1(c * h); for(int k = 1; k < policies::get_max_series_iterations(); ++k) { f = (k * f + p + q) / (k*k - v*v); p /= k - v; q /= k + v; c *= c_mult / k; T c1 = pow(-x * x / 4, T(k)) / factorial(k, pol); g = f + g_prefix * q; h = -k * g + p; y += c * g; y1 += c * h; if(c * g / tools::epsilon() < y) break; } *Y = -y; *Y1 = (-2 / x) * y1; } template T asymptotic_bessel_i_large_x(T v, T x, const Policy& pol) { BOOST_MATH_STD_USING // ADL of std names T s = 1; T mu = 4 * v * v; T ex = 8 * x; T num = mu - 1; T denom = ex; s -= num / denom; num *= mu - 9; denom *= ex * 2; s += num / denom; num *= mu - 25; denom *= ex * 3; s -= num / denom; // Try and avoid overflow to the last minute: T e = exp(x/2); s = e * (e * s / sqrt(2 * x * constants::pi())); return (boost::math::isfinite)(s) ? s : policies::raise_overflow_error("boost::math::asymptotic_bessel_i_large_x<%1%>(%1%,%1%)", nullptr, pol); } }}} // namespaces #endif