123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- // boost asinh.hpp header file
- // (C) Copyright Eric Ford 2001 & Hubert Holin.
- // (C) Copyright John Maddock 2008.
- // Distributed under the Boost Software License, Version 1.0. (See
- // accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- // See http://www.boost.org for updates, documentation, and revision history.
- #ifndef BOOST_ACOSH_HPP
- #define BOOST_ACOSH_HPP
- #ifdef _MSC_VER
- #pragma once
- #endif
- #include <cmath>
- #include <boost/math/tools/precision.hpp>
- #include <boost/math/policies/error_handling.hpp>
- #include <boost/math/special_functions/math_fwd.hpp>
- #include <boost/math/special_functions/log1p.hpp>
- #include <boost/math/constants/constants.hpp>
- #include <boost/math/special_functions/fpclassify.hpp>
- // This is the inverse of the hyperbolic cosine function.
- namespace boost
- {
- namespace math
- {
- namespace detail
- {
- template<typename T, typename Policy>
- inline T acosh_imp(const T x, const Policy& pol)
- {
- BOOST_MATH_STD_USING
-
- if((x < 1) || (boost::math::isnan)(x))
- {
- return policies::raise_domain_error<T>("boost::math::acosh<%1%>(%1%)", "acosh requires x >= 1, but got x = %1%.", x, pol);
- }
- else if ((x - 1) >= tools::root_epsilon<T>())
- {
- if (x > 1 / tools::root_epsilon<T>())
- {
- // http://functions.wolfram.com/ElementaryFunctions/ArcCosh/06/01/06/01/0001/
- // approximation by laurent series in 1/x at 0+ order from -1 to 0
- return log(x) + constants::ln_two<T>();
- }
- else if(x < 1.5f)
- {
- // This is just a rearrangement of the standard form below
- // devised to minimise loss of precision when x ~ 1:
- T y = x - 1;
- return boost::math::log1p(y + sqrt(y * y + 2 * y), pol);
- }
- else
- {
- // http://functions.wolfram.com/ElementaryFunctions/ArcCosh/02/
- return( log( x + sqrt(x * x - 1) ) );
- }
- }
- else
- {
- // see http://functions.wolfram.com/ElementaryFunctions/ArcCosh/06/01/04/01/0001/
- T y = x - 1;
-
- // approximation by taylor series in y at 0 up to order 2
- T result = sqrt(2 * y) * (1 - y /12 + 3 * y * y / 160);
- return result;
- }
- }
- }
- template<typename T, typename Policy>
- inline typename tools::promote_args<T>::type acosh(T x, const Policy&)
- {
- typedef typename tools::promote_args<T>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- return policies::checked_narrowing_cast<result_type, forwarding_policy>(
- detail::acosh_imp(static_cast<value_type>(x), forwarding_policy()),
- "boost::math::acosh<%1%>(%1%)");
- }
- template<typename T>
- inline typename tools::promote_args<T>::type acosh(T x)
- {
- return boost::math::acosh(x, policies::policy<>());
- }
- }
- }
- #endif /* BOOST_ACOSH_HPP */
|