123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732 |
- // Copyright 2018 Ulf Adams
- //
- // The contents of this file may be used under the terms of the Apache License,
- // Version 2.0.
- //
- // (See accompanying file LICENSE-Apache or copy at
- // http://www.apache.org/licenses/LICENSE-2.0)
- //
- // Alternatively, the contents of this file may be used under the terms of
- // the Boost Software License, Version 1.0.
- // (See accompanying file LICENSE-Boost or copy at
- // https://www.boost.org/LICENSE_1_0.txt)
- //
- // Unless required by applicable law or agreed to in writing, this software
- // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
- // KIND, either express or implied.
- // Runtime compiler options:
- // -DRYU_DEBUG Generate verbose debugging output to stdout.
- //
- // -DRYU_ONLY_64_BIT_OPS Avoid using uint128_t or 64-bit intrinsics. Slower,
- // depending on your compiler.
- //
- // -DRYU_OPTIMIZE_SIZE Use smaller lookup tables. Instead of storing every
- // required power of 5, only store every 26th entry, and compute
- // intermediate values with a multiplication. This reduces the lookup table
- // size by about 10x (only one case, and only double) at the cost of some
- // performance. Currently requires MSVC intrinsics.
- /*
- This is a derivative work
- */
- #ifndef BOOST_JSON_DETAIL_RYU_IMPL_D2S_IPP
- #define BOOST_JSON_DETAIL_RYU_IMPL_D2S_IPP
- #include <boost/json/detail/ryu/ryu.hpp>
- #include <cstdlib>
- #include <cstring>
- #ifdef RYU_DEBUG
- #include <stdio.h>
- #endif
- // ABSL avoids uint128_t on Win32 even if __SIZEOF_INT128__ is defined.
- // Let's do the same for now.
- #if defined(__SIZEOF_INT128__) && !defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS)
- #define BOOST_JSON_RYU_HAS_UINT128
- #elif defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS) && defined(_M_X64)
- #define BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS
- #endif
- #include <boost/json/detail/ryu/detail/common.hpp>
- #include <boost/json/detail/ryu/detail/digit_table.hpp>
- #include <boost/json/detail/ryu/detail/d2s.hpp>
- #include <boost/json/detail/ryu/detail/d2s_intrinsics.hpp>
- namespace boost {
- namespace json {
- namespace detail {
- namespace ryu {
- namespace detail {
- // We need a 64x128-bit multiplication and a subsequent 128-bit shift.
- // Multiplication:
- // The 64-bit factor is variable and passed in, the 128-bit factor comes
- // from a lookup table. We know that the 64-bit factor only has 55
- // significant bits (i.e., the 9 topmost bits are zeros). The 128-bit
- // factor only has 124 significant bits (i.e., the 4 topmost bits are
- // zeros).
- // Shift:
- // In principle, the multiplication result requires 55 + 124 = 179 bits to
- // represent. However, we then shift this value to the right by j, which is
- // at least j >= 115, so the result is guaranteed to fit into 179 - 115 = 64
- // bits. This means that we only need the topmost 64 significant bits of
- // the 64x128-bit multiplication.
- //
- // There are several ways to do this:
- // 1. Best case: the compiler exposes a 128-bit type.
- // We perform two 64x64-bit multiplications, add the higher 64 bits of the
- // lower result to the higher result, and shift by j - 64 bits.
- //
- // We explicitly cast from 64-bit to 128-bit, so the compiler can tell
- // that these are only 64-bit inputs, and can map these to the best
- // possible sequence of assembly instructions.
- // x64 machines happen to have matching assembly instructions for
- // 64x64-bit multiplications and 128-bit shifts.
- //
- // 2. Second best case: the compiler exposes intrinsics for the x64 assembly
- // instructions mentioned in 1.
- //
- // 3. We only have 64x64 bit instructions that return the lower 64 bits of
- // the result, i.e., we have to use plain C.
- // Our inputs are less than the full width, so we have three options:
- // a. Ignore this fact and just implement the intrinsics manually.
- // b. Split both into 31-bit pieces, which guarantees no internal overflow,
- // but requires extra work upfront (unless we change the lookup table).
- // c. Split only the first factor into 31-bit pieces, which also guarantees
- // no internal overflow, but requires extra work since the intermediate
- // results are not perfectly aligned.
- #if defined(BOOST_JSON_RYU_HAS_UINT128)
- // Best case: use 128-bit type.
- inline
- std::uint64_t
- mulShift(
- const std::uint64_t m,
- const std::uint64_t* const mul,
- const std::int32_t j) noexcept
- {
- const uint128_t b0 = ((uint128_t) m) * mul[0];
- const uint128_t b2 = ((uint128_t) m) * mul[1];
- return (std::uint64_t) (((b0 >> 64) + b2) >> (j - 64));
- }
- inline
- uint64_t
- mulShiftAll(
- const std::uint64_t m,
- const std::uint64_t* const mul,
- std::int32_t const j,
- std::uint64_t* const vp,
- std::uint64_t* const vm,
- const std::uint32_t mmShift) noexcept
- {
- // m <<= 2;
- // uint128_t b0 = ((uint128_t) m) * mul[0]; // 0
- // uint128_t b2 = ((uint128_t) m) * mul[1]; // 64
- //
- // uint128_t hi = (b0 >> 64) + b2;
- // uint128_t lo = b0 & 0xffffffffffffffffull;
- // uint128_t factor = (((uint128_t) mul[1]) << 64) + mul[0];
- // uint128_t vpLo = lo + (factor << 1);
- // *vp = (std::uint64_t) ((hi + (vpLo >> 64)) >> (j - 64));
- // uint128_t vmLo = lo - (factor << mmShift);
- // *vm = (std::uint64_t) ((hi + (vmLo >> 64) - (((uint128_t) 1ull) << 64)) >> (j - 64));
- // return (std::uint64_t) (hi >> (j - 64));
- *vp = mulShift(4 * m + 2, mul, j);
- *vm = mulShift(4 * m - 1 - mmShift, mul, j);
- return mulShift(4 * m, mul, j);
- }
- #elif defined(BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS)
- inline
- std::uint64_t
- mulShift(
- const std::uint64_t m,
- const std::uint64_t* const mul,
- const std::int32_t j) noexcept
- {
- // m is maximum 55 bits
- std::uint64_t high1; // 128
- std::uint64_t const low1 = umul128(m, mul[1], &high1); // 64
- std::uint64_t high0; // 64
- umul128(m, mul[0], &high0); // 0
- std::uint64_t const sum = high0 + low1;
- if (sum < high0)
- ++high1; // overflow into high1
- return shiftright128(sum, high1, j - 64);
- }
- inline
- std::uint64_t
- mulShiftAll(
- const std::uint64_t m,
- const std::uint64_t* const mul,
- const std::int32_t j,
- std::uint64_t* const vp,
- std::uint64_t* const vm,
- const std::uint32_t mmShift) noexcept
- {
- *vp = mulShift(4 * m + 2, mul, j);
- *vm = mulShift(4 * m - 1 - mmShift, mul, j);
- return mulShift(4 * m, mul, j);
- }
- #else // !defined(BOOST_JSON_RYU_HAS_UINT128) && !defined(BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS)
- inline
- std::uint64_t
- mulShiftAll(
- std::uint64_t m,
- const std::uint64_t* const mul,
- const std::int32_t j,
- std::uint64_t* const vp,
- std::uint64_t* const vm,
- const std::uint32_t mmShift)
- {
- m <<= 1;
- // m is maximum 55 bits
- std::uint64_t tmp;
- std::uint64_t const lo = umul128(m, mul[0], &tmp);
- std::uint64_t hi;
- std::uint64_t const mid = tmp + umul128(m, mul[1], &hi);
- hi += mid < tmp; // overflow into hi
- const std::uint64_t lo2 = lo + mul[0];
- const std::uint64_t mid2 = mid + mul[1] + (lo2 < lo);
- const std::uint64_t hi2 = hi + (mid2 < mid);
- *vp = shiftright128(mid2, hi2, (std::uint32_t)(j - 64 - 1));
- if (mmShift == 1)
- {
- const std::uint64_t lo3 = lo - mul[0];
- const std::uint64_t mid3 = mid - mul[1] - (lo3 > lo);
- const std::uint64_t hi3 = hi - (mid3 > mid);
- *vm = shiftright128(mid3, hi3, (std::uint32_t)(j - 64 - 1));
- }
- else
- {
- const std::uint64_t lo3 = lo + lo;
- const std::uint64_t mid3 = mid + mid + (lo3 < lo);
- const std::uint64_t hi3 = hi + hi + (mid3 < mid);
- const std::uint64_t lo4 = lo3 - mul[0];
- const std::uint64_t mid4 = mid3 - mul[1] - (lo4 > lo3);
- const std::uint64_t hi4 = hi3 - (mid4 > mid3);
- *vm = shiftright128(mid4, hi4, (std::uint32_t)(j - 64));
- }
- return shiftright128(mid, hi, (std::uint32_t)(j - 64 - 1));
- }
- #endif // BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS
- inline
- std::uint32_t
- decimalLength17(
- const std::uint64_t v)
- {
- // This is slightly faster than a loop.
- // The average output length is 16.38 digits, so we check high-to-low.
- // Function precondition: v is not an 18, 19, or 20-digit number.
- // (17 digits are sufficient for round-tripping.)
- BOOST_ASSERT(v < 100000000000000000L);
- if (v >= 10000000000000000L) { return 17; }
- if (v >= 1000000000000000L) { return 16; }
- if (v >= 100000000000000L) { return 15; }
- if (v >= 10000000000000L) { return 14; }
- if (v >= 1000000000000L) { return 13; }
- if (v >= 100000000000L) { return 12; }
- if (v >= 10000000000L) { return 11; }
- if (v >= 1000000000L) { return 10; }
- if (v >= 100000000L) { return 9; }
- if (v >= 10000000L) { return 8; }
- if (v >= 1000000L) { return 7; }
- if (v >= 100000L) { return 6; }
- if (v >= 10000L) { return 5; }
- if (v >= 1000L) { return 4; }
- if (v >= 100L) { return 3; }
- if (v >= 10L) { return 2; }
- return 1;
- }
- // A floating decimal representing m * 10^e.
- struct floating_decimal_64
- {
- std::uint64_t mantissa;
- // Decimal exponent's range is -324 to 308
- // inclusive, and can fit in a short if needed.
- std::int32_t exponent;
- };
- inline
- floating_decimal_64
- d2d(
- const std::uint64_t ieeeMantissa,
- const std::uint32_t ieeeExponent)
- {
- std::int32_t e2;
- std::uint64_t m2;
- if (ieeeExponent == 0)
- {
- // We subtract 2 so that the bounds computation has 2 additional bits.
- e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
- m2 = ieeeMantissa;
- }
- else
- {
- e2 = (std::int32_t)ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
- m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
- }
- const bool even = (m2 & 1) == 0;
- const bool acceptBounds = even;
- #ifdef RYU_DEBUG
- printf("-> %" PRIu64 " * 2^%d\n", m2, e2 + 2);
- #endif
- // Step 2: Determine the interval of valid decimal representations.
- const std::uint64_t mv = 4 * m2;
- // Implicit bool -> int conversion. True is 1, false is 0.
- const std::uint32_t mmShift = ieeeMantissa != 0 || ieeeExponent <= 1;
- // We would compute mp and mm like this:
- // uint64_t mp = 4 * m2 + 2;
- // uint64_t mm = mv - 1 - mmShift;
- // Step 3: Convert to a decimal power base using 128-bit arithmetic.
- std::uint64_t vr, vp, vm;
- std::int32_t e10;
- bool vmIsTrailingZeros = false;
- bool vrIsTrailingZeros = false;
- if (e2 >= 0) {
- // I tried special-casing q == 0, but there was no effect on performance.
- // This expression is slightly faster than max(0, log10Pow2(e2) - 1).
- const std::uint32_t q = log10Pow2(e2) - (e2 > 3);
- e10 = (std::int32_t)q;
- const std::int32_t k = DOUBLE_POW5_INV_BITCOUNT + pow5bits((int32_t)q) - 1;
- const std::int32_t i = -e2 + (std::int32_t)q + k;
- #if defined(BOOST_JSON_RYU_OPTIMIZE_SIZE)
- uint64_t pow5[2];
- double_computeInvPow5(q, pow5);
- vr = mulShiftAll(m2, pow5, i, &vp, &vm, mmShift);
- #else
- vr = mulShiftAll(m2, DOUBLE_POW5_INV_SPLIT()[q], i, &vp, &vm, mmShift);
- #endif
- #ifdef RYU_DEBUG
- printf("%" PRIu64 " * 2^%d / 10^%u\n", mv, e2, q);
- printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
- #endif
- if (q <= 21)
- {
- // This should use q <= 22, but I think 21 is also safe. Smaller values
- // may still be safe, but it's more difficult to reason about them.
- // Only one of mp, mv, and mm can be a multiple of 5, if any.
- const std::uint32_t mvMod5 = ((std::uint32_t)mv) - 5 * ((std::uint32_t)div5(mv));
- if (mvMod5 == 0)
- {
- vrIsTrailingZeros = multipleOfPowerOf5(mv, q);
- }
- else if (acceptBounds)
- {
- // Same as min(e2 + (~mm & 1), pow5Factor(mm)) >= q
- // <=> e2 + (~mm & 1) >= q && pow5Factor(mm) >= q
- // <=> true && pow5Factor(mm) >= q, since e2 >= q.
- vmIsTrailingZeros = multipleOfPowerOf5(mv - 1 - mmShift, q);
- }
- else
- {
- // Same as min(e2 + 1, pow5Factor(mp)) >= q.
- vp -= multipleOfPowerOf5(mv + 2, q);
- }
- }
- }
- else
- {
- // This expression is slightly faster than max(0, log10Pow5(-e2) - 1).
- const std::uint32_t q = log10Pow5(-e2) - (-e2 > 1);
- e10 = (std::int32_t)q + e2;
- const std::int32_t i = -e2 - (std::int32_t)q;
- const std::int32_t k = pow5bits(i) - DOUBLE_POW5_BITCOUNT;
- const std::int32_t j = (std::int32_t)q - k;
- #if defined(BOOST_JSON_RYU_OPTIMIZE_SIZE)
- std::uint64_t pow5[2];
- double_computePow5(i, pow5);
- vr = mulShiftAll(m2, pow5, j, &vp, &vm, mmShift);
- #else
- vr = mulShiftAll(m2, DOUBLE_POW5_SPLIT()[i], j, &vp, &vm, mmShift);
- #endif
- #ifdef RYU_DEBUG
- printf("%" PRIu64 " * 5^%d / 10^%u\n", mv, -e2, q);
- printf("%u %d %d %d\n", q, i, k, j);
- printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
- #endif
- if (q <= 1)
- {
- // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
- // mv = 4 * m2, so it always has at least two trailing 0 bits.
- vrIsTrailingZeros = true;
- if (acceptBounds)
- {
- // mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1.
- vmIsTrailingZeros = mmShift == 1;
- }
- else
- {
- // mp = mv + 2, so it always has at least one trailing 0 bit.
- --vp;
- }
- }
- else if (q < 63)
- {
- // TODO(ulfjack): Use a tighter bound here.
- // We want to know if the full product has at least q trailing zeros.
- // We need to compute min(p2(mv), p5(mv) - e2) >= q
- // <=> p2(mv) >= q && p5(mv) - e2 >= q
- // <=> p2(mv) >= q (because -e2 >= q)
- vrIsTrailingZeros = multipleOfPowerOf2(mv, q);
- #ifdef RYU_DEBUG
- printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
- #endif
- }
- }
- #ifdef RYU_DEBUG
- printf("e10=%d\n", e10);
- printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
- printf("vm is trailing zeros=%s\n", vmIsTrailingZeros ? "true" : "false");
- printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
- #endif
- // Step 4: Find the shortest decimal representation in the interval of valid representations.
- std::int32_t removed = 0;
- std::uint8_t lastRemovedDigit = 0;
- std::uint64_t output;
- // On average, we remove ~2 digits.
- if (vmIsTrailingZeros || vrIsTrailingZeros)
- {
- // General case, which happens rarely (~0.7%).
- for (;;)
- {
- const std::uint64_t vpDiv10 = div10(vp);
- const std::uint64_t vmDiv10 = div10(vm);
- if (vpDiv10 <= vmDiv10)
- break;
- const std::uint32_t vmMod10 = ((std::uint32_t)vm) - 10 * ((std::uint32_t)vmDiv10);
- const std::uint64_t vrDiv10 = div10(vr);
- const std::uint32_t vrMod10 = ((std::uint32_t)vr) - 10 * ((std::uint32_t)vrDiv10);
- vmIsTrailingZeros &= vmMod10 == 0;
- vrIsTrailingZeros &= lastRemovedDigit == 0;
- lastRemovedDigit = (uint8_t)vrMod10;
- vr = vrDiv10;
- vp = vpDiv10;
- vm = vmDiv10;
- ++removed;
- }
- #ifdef RYU_DEBUG
- printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
- printf("d-10=%s\n", vmIsTrailingZeros ? "true" : "false");
- #endif
- if (vmIsTrailingZeros)
- {
- for (;;)
- {
- const std::uint64_t vmDiv10 = div10(vm);
- const std::uint32_t vmMod10 = ((std::uint32_t)vm) - 10 * ((std::uint32_t)vmDiv10);
- if (vmMod10 != 0)
- break;
- const std::uint64_t vpDiv10 = div10(vp);
- const std::uint64_t vrDiv10 = div10(vr);
- const std::uint32_t vrMod10 = ((std::uint32_t)vr) - 10 * ((std::uint32_t)vrDiv10);
- vrIsTrailingZeros &= lastRemovedDigit == 0;
- lastRemovedDigit = (uint8_t)vrMod10;
- vr = vrDiv10;
- vp = vpDiv10;
- vm = vmDiv10;
- ++removed;
- }
- }
- #ifdef RYU_DEBUG
- printf("%" PRIu64 " %d\n", vr, lastRemovedDigit);
- printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
- #endif
- if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0)
- {
- // Round even if the exact number is .....50..0.
- lastRemovedDigit = 4;
- }
- // We need to take vr + 1 if vr is outside bounds or we need to round up.
- output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5);
- }
- else
- {
- // Specialized for the common case (~99.3%). Percentages below are relative to this.
- bool roundUp = false;
- const std::uint64_t vpDiv100 = div100(vp);
- const std::uint64_t vmDiv100 = div100(vm);
- if (vpDiv100 > vmDiv100)
- {
- // Optimization: remove two digits at a time (~86.2%).
- const std::uint64_t vrDiv100 = div100(vr);
- const std::uint32_t vrMod100 = ((std::uint32_t)vr) - 100 * ((std::uint32_t)vrDiv100);
- roundUp = vrMod100 >= 50;
- vr = vrDiv100;
- vp = vpDiv100;
- vm = vmDiv100;
- removed += 2;
- }
- // Loop iterations below (approximately), without optimization above:
- // 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02%
- // Loop iterations below (approximately), with optimization above:
- // 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
- for (;;)
- {
- const std::uint64_t vpDiv10 = div10(vp);
- const std::uint64_t vmDiv10 = div10(vm);
- if (vpDiv10 <= vmDiv10)
- break;
- const std::uint64_t vrDiv10 = div10(vr);
- const std::uint32_t vrMod10 = ((std::uint32_t)vr) - 10 * ((std::uint32_t)vrDiv10);
- roundUp = vrMod10 >= 5;
- vr = vrDiv10;
- vp = vpDiv10;
- vm = vmDiv10;
- ++removed;
- }
- #ifdef RYU_DEBUG
- printf("%" PRIu64 " roundUp=%s\n", vr, roundUp ? "true" : "false");
- printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
- #endif
- // We need to take vr + 1 if vr is outside bounds or we need to round up.
- output = vr + (vr == vm || roundUp);
- }
- const std::int32_t exp = e10 + removed;
- #ifdef RYU_DEBUG
- printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
- printf("O=%" PRIu64 "\n", output);
- printf("EXP=%d\n", exp);
- #endif
- floating_decimal_64 fd;
- fd.exponent = exp;
- fd.mantissa = output;
- return fd;
- }
- inline
- int
- to_chars(
- const floating_decimal_64 v,
- const bool sign,
- char* const result)
- {
- // Step 5: Print the decimal representation.
- int index = 0;
- if (sign)
- result[index++] = '-';
- std::uint64_t output = v.mantissa;
- std::uint32_t const olength = decimalLength17(output);
- #ifdef RYU_DEBUG
- printf("DIGITS=%" PRIu64 "\n", v.mantissa);
- printf("OLEN=%u\n", olength);
- printf("EXP=%u\n", v.exponent + olength);
- #endif
- // Print the decimal digits.
- // The following code is equivalent to:
- // for (uint32_t i = 0; i < olength - 1; ++i) {
- // const uint32_t c = output % 10; output /= 10;
- // result[index + olength - i] = (char) ('0' + c);
- // }
- // result[index] = '0' + output % 10;
- std::uint32_t i = 0;
- // We prefer 32-bit operations, even on 64-bit platforms.
- // We have at most 17 digits, and uint32_t can store 9 digits.
- // If output doesn't fit into uint32_t, we cut off 8 digits,
- // so the rest will fit into uint32_t.
- if ((output >> 32) != 0)
- {
- // Expensive 64-bit division.
- std::uint64_t const q = div1e8(output);
- std::uint32_t output2 = ((std::uint32_t)output) - 100000000 * ((std::uint32_t)q);
- output = q;
- const std::uint32_t c = output2 % 10000;
- output2 /= 10000;
- const std::uint32_t d = output2 % 10000;
- const std::uint32_t c0 = (c % 100) << 1;
- const std::uint32_t c1 = (c / 100) << 1;
- const std::uint32_t d0 = (d % 100) << 1;
- const std::uint32_t d1 = (d / 100) << 1;
- std::memcpy(result + index + olength - i - 1, DIGIT_TABLE() + c0, 2);
- std::memcpy(result + index + olength - i - 3, DIGIT_TABLE() + c1, 2);
- std::memcpy(result + index + olength - i - 5, DIGIT_TABLE() + d0, 2);
- std::memcpy(result + index + olength - i - 7, DIGIT_TABLE() + d1, 2);
- i += 8;
- }
- uint32_t output2 = (std::uint32_t)output;
- while (output2 >= 10000)
- {
- #ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217
- const uint32_t c = output2 - 10000 * (output2 / 10000);
- #else
- const uint32_t c = output2 % 10000;
- #endif
- output2 /= 10000;
- const uint32_t c0 = (c % 100) << 1;
- const uint32_t c1 = (c / 100) << 1;
- memcpy(result + index + olength - i - 1, DIGIT_TABLE() + c0, 2);
- memcpy(result + index + olength - i - 3, DIGIT_TABLE() + c1, 2);
- i += 4;
- }
- if (output2 >= 100) {
- const uint32_t c = (output2 % 100) << 1;
- output2 /= 100;
- memcpy(result + index + olength - i - 1, DIGIT_TABLE() + c, 2);
- i += 2;
- }
- if (output2 >= 10) {
- const uint32_t c = output2 << 1;
- // We can't use memcpy here: the decimal dot goes between these two digits.
- result[index + olength - i] = DIGIT_TABLE()[c + 1];
- result[index] = DIGIT_TABLE()[c];
- }
- else {
- result[index] = (char)('0' + output2);
- }
- // Print decimal point if needed.
- if (olength > 1) {
- result[index + 1] = '.';
- index += olength + 1;
- }
- else {
- ++index;
- }
- // Print the exponent.
- result[index++] = 'E';
- int32_t exp = v.exponent + (int32_t)olength - 1;
- if (exp < 0) {
- result[index++] = '-';
- exp = -exp;
- }
- if (exp >= 100) {
- const int32_t c = exp % 10;
- memcpy(result + index, DIGIT_TABLE() + 2 * (exp / 10), 2);
- result[index + 2] = (char)('0' + c);
- index += 3;
- }
- else if (exp >= 10) {
- memcpy(result + index, DIGIT_TABLE() + 2 * exp, 2);
- index += 2;
- }
- else {
- result[index++] = (char)('0' + exp);
- }
- return index;
- }
- static inline bool d2d_small_int(const uint64_t ieeeMantissa, const uint32_t ieeeExponent,
- floating_decimal_64* const v) {
- const uint64_t m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
- const int32_t e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS;
- if (e2 > 0) {
- // f = m2 * 2^e2 >= 2^53 is an integer.
- // Ignore this case for now.
- return false;
- }
- if (e2 < -52) {
- // f < 1.
- return false;
- }
- // Since 2^52 <= m2 < 2^53 and 0 <= -e2 <= 52: 1 <= f = m2 / 2^-e2 < 2^53.
- // Test if the lower -e2 bits of the significand are 0, i.e. whether the fraction is 0.
- const uint64_t mask = (1ull << -e2) - 1;
- const uint64_t fraction = m2 & mask;
- if (fraction != 0) {
- return false;
- }
- // f is an integer in the range [1, 2^53).
- // Note: mantissa might contain trailing (decimal) 0's.
- // Note: since 2^53 < 10^16, there is no need to adjust decimalLength17().
- v->mantissa = m2 >> -e2;
- v->exponent = 0;
- return true;
- }
- } // detail
- int
- d2s_buffered_n(
- double f,
- char* result,
- bool allow_infinity_and_nan) noexcept
- {
- using namespace detail;
- // Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
- std::uint64_t const bits = double_to_bits(f);
- #ifdef RYU_DEBUG
- printf("IN=");
- for (std::int32_t bit = 63; bit >= 0; --bit) {
- printf("%d", (int)((bits >> bit) & 1));
- }
- printf("\n");
- #endif
- // Decode bits into sign, mantissa, and exponent.
- const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0;
- const std::uint64_t ieeeMantissa = bits & ((1ull << DOUBLE_MANTISSA_BITS) - 1);
- const std::uint32_t ieeeExponent = (std::uint32_t)((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1));
- // Case distinction; exit early for the easy cases.
- if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0)) {
- // We changed how special numbers are output by default
- if (allow_infinity_and_nan)
- return copy_special_str(result, ieeeSign, ieeeExponent != 0, ieeeMantissa != 0);
- else
- return copy_special_str_conforming(result, ieeeSign, ieeeExponent != 0, ieeeMantissa != 0);
- }
- floating_decimal_64 v;
- const bool isSmallInt = d2d_small_int(ieeeMantissa, ieeeExponent, &v);
- if (isSmallInt) {
- // For small integers in the range [1, 2^53), v.mantissa might contain trailing (decimal) zeros.
- // For scientific notation we need to move these zeros into the exponent.
- // (This is not needed for fixed-point notation, so it might be beneficial to trim
- // trailing zeros in to_chars only if needed - once fixed-point notation output is implemented.)
- for (;;) {
- std::uint64_t const q = div10(v.mantissa);
- std::uint32_t const r = ((std::uint32_t) v.mantissa) - 10 * ((std::uint32_t) q);
- if (r != 0)
- break;
- v.mantissa = q;
- ++v.exponent;
- }
- }
- else {
- v = d2d(ieeeMantissa, ieeeExponent);
- }
- return to_chars(v, ieeeSign, result);
- }
- } // ryu
- } // detail
- } // namespace json
- } // namespace boost
- #endif
|