12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152 |
- # module 'poly' -- Polynomials
- # A polynomial is represented by a list of coefficients, e.g.,
- # [1, 10, 5] represents 1*x**0 + 10*x**1 + 5*x**2 (or 1 + 10x + 5x**2).
- # There is no way to suppress internal zeros; trailing zeros are
- # taken out by normalize().
- def normalize(p): # Strip unnecessary zero coefficients
- n = len(p)
- while n:
- if p[n-1]: return p[:n]
- n = n-1
- return []
- def plus(a, b):
- if len(a) < len(b): a, b = b, a # make sure a is the longest
- res = a[:] # make a copy
- for i in range(len(b)):
- res[i] = res[i] + b[i]
- return normalize(res)
- def minus(a, b):
- neg_b = map(lambda x: -x, b[:])
- return plus(a, neg_b)
- def one(power, coeff): # Representation of coeff * x**power
- res = []
- for i in range(power): res.append(0)
- return res + [coeff]
- def times(a, b):
- res = []
- for i in range(len(a)):
- for j in range(len(b)):
- res = plus(res, one(i+j, a[i]*b[j]))
- return res
- def power(a, n): # Raise polynomial a to the positive integral power n
- if n == 0: return [1]
- if n == 1: return a
- if n/2*2 == n:
- b = power(a, n/2)
- return times(b, b)
- return times(power(a, n-1), a)
- def der(a): # First derivative
- res = a[1:]
- for i in range(len(res)):
- res[i] = res[i] * (i+1)
- return res
- # Computing a primitive function would require rational arithmetic...
|