/* * Copyright (c) Contributors, http://opensimulator.org/ * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyrightD * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSimulator Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ using System; using System.Collections.Generic; using System.Linq; using System.Reflection; using System.Runtime.InteropServices; using System.Text; using System.Threading; using OpenSim.Framework; using OpenSim.Framework.Monitoring; using OpenSim.Region.Framework.Scenes; using OpenSim.Region.Framework.Interfaces; using OpenSim.Region.PhysicsModules.SharedBase; using Nini.Config; using log4net; using OpenMetaverse; using Mono.Addins; namespace OpenSim.Region.PhysicsModule.BulletS { [Extension(Path = "/OpenSim/RegionModules", NodeName = "RegionModule", Id = "BulletSPhysicsScene")] public sealed class BSScene : PhysicsScene, IPhysicsParameters, INonSharedRegionModule { internal static readonly ILog m_log = LogManager.GetLogger(System.Reflection.MethodBase.GetCurrentMethod().DeclaringType); internal static readonly string LogHeader = "[BULLETS SCENE]"; private bool m_Enabled = false; private IConfigSource m_Config; // The name of the region we're working for. public string RegionName { get; private set; } // The handle to the underlying managed or unmanaged version of Bullet being used. public string BulletEngineName { get; private set; } public BSAPITemplate PE; // If the physics engine is running on a separate thread public Thread m_physicsThread; public Dictionary PhysObjects; public BSShapeCollection Shapes; // Keeping track of the objects with collisions so we can report begin and end of a collision public HashSet ObjectsWithCollisions = new HashSet(); public HashSet ObjectsWithNoMoreCollisions = new HashSet(); // All the collision processing is protected with this lock object public Object CollisionLock = new Object(); // Properties are updated here public Object UpdateLock = new Object(); public HashSet ObjectsWithUpdates = new HashSet(); // Keep track of all the avatars so we can send them a collision event // every tick so OpenSim will update its animation. private HashSet AvatarsInScene = new HashSet(); private Object AvatarsInSceneLock = new Object(); // let my minuions use my logger public ILog Logger { get { return m_log; } } public IMesher mesher; public uint WorldID { get; private set; } public BulletWorld World { get; private set; } // All the constraints that have been allocated in this instance. public BSConstraintCollection Constraints { get; private set; } // Simulation parameters //internal float m_physicsStepTime; // if running independently, the interval simulated by default internal int m_maxSubSteps; internal float m_fixedTimeStep; internal float m_simulatedTime; // the time simulated previously. Used for physics framerate calc. internal long m_simulationStep = 0; // The current simulation step. public long SimulationStep { get { return m_simulationStep; } } // A number to use for SimulationStep that is probably not any step value // Used by the collision code (which remembers the step when a collision happens) to remember not any simulation step. public static long NotASimulationStep = -1234; internal float LastTimeStep { get; private set; } // The simulation time from the last invocation of Simulate() internal float NominalFrameRate { get; set; } // Parameterized ideal frame rate that simulation is scaled to // Physical objects can register for prestep or poststep events public delegate void PreStepAction(float timeStep); public delegate void PostStepAction(float timeStep); public event PreStepAction BeforeStep; public event PostStepAction AfterStep; // A value of the time 'now' so all the collision and update routines do not have to get their own // Set to 'now' just before all the prims and actors are called for collisions and updates public int SimulationNowTime { get; private set; } // True if initialized and ready to do simulation steps private bool m_initialized = false; // Object locked whenever execution is inside the physics engine public Object PhysicsEngineLock = new object(); // Flag that is true when the simulator is active and shouldn't be touched public bool InSimulationTime { get; private set; } // Pinned memory used to pass step information between managed and unmanaged internal int m_maxCollisionsPerFrame; internal CollisionDesc[] m_collisionArray; internal int m_maxUpdatesPerFrame; internal EntityProperties[] m_updateArray; /// /// Used to control physics simulation timing if Bullet is running on its own thread. /// private ManualResetEvent m_updateWaitEvent; public const uint TERRAIN_ID = 0; // OpenSim senses terrain with a localID of zero public const uint GROUNDPLANE_ID = 1; public const uint CHILDTERRAIN_ID = 2; // Terrain allocated based on our mega-prim childre start here public float SimpleWaterLevel { get; set; } public BSTerrainManager TerrainManager { get; private set; } public ConfigurationParameters Params { get { return UnmanagedParams[0]; } } public Vector3 DefaultGravity { get { return new Vector3(0f, 0f, Params.gravity); } } // Just the Z value of the gravity public float DefaultGravityZ { get { return Params.gravity; } } // When functions in the unmanaged code must be called, it is only // done at a known time just before the simulation step. The taint // system saves all these function calls and executes them in // order before the simulation. public delegate void TaintCallback(); private struct TaintCallbackEntry { public String originator; public String ident; public TaintCallback callback; public TaintCallbackEntry(string pIdent, TaintCallback pCallBack) { originator = BSScene.DetailLogZero; ident = pIdent; callback = pCallBack; } public TaintCallbackEntry(string pOrigin, string pIdent, TaintCallback pCallBack) { originator = pOrigin; ident = pIdent; callback = pCallBack; } } private Object _taintLock = new Object(); // lock for using the next object private List _taintOperations; private Dictionary _postTaintOperations; private List _postStepOperations; // A pointer to an instance if this structure is passed to the C++ code // Used to pass basic configuration values to the unmanaged code. internal ConfigurationParameters[] UnmanagedParams; // Sometimes you just have to log everything. public LogWriter PhysicsLogging; private bool m_physicsLoggingEnabled; private string m_physicsLoggingDir; private string m_physicsLoggingPrefix; private int m_physicsLoggingFileMinutes; private bool m_physicsLoggingDoFlush; private bool m_physicsPhysicalDumpEnabled; public int PhysicsMetricDumpFrames { get; set; } // 'true' of the vehicle code is to log lots of details public bool VehicleLoggingEnabled { get; private set; } public bool VehiclePhysicalLoggingEnabled { get; private set; } #region INonSharedRegionModule public string Name { get { return "BulletSim"; } } public Type ReplaceableInterface { get { return null; } } public void Initialise(IConfigSource source) { // TODO: Move this out of Startup IConfig config = source.Configs["Startup"]; if (config != null) { string physics = config.GetString("physics", string.Empty); if (physics == Name) { string mesher = config.GetString("meshing", string.Empty); if (string.IsNullOrEmpty(mesher) || !mesher.Equals("Meshmerizer")) { m_log.Error("[BulletSim] Opensim.ini meshing option must be set to \"Meshmerizer\""); throw new Exception("Invalid physics meshing option"); } m_Enabled = true; m_Config = source; } } } public void Close() { } public void AddRegion(Scene scene) { if (!m_Enabled) return; RegionName = scene.RegionInfo.RegionName; PhysicsSceneName = Name + "/" + RegionName; scene.RegisterModuleInterface(this); Vector3 extent = new Vector3(scene.RegionInfo.RegionSizeX, scene.RegionInfo.RegionSizeY, scene.RegionInfo.RegionSizeZ); Initialise(m_Config, extent); base.Initialise(scene.PhysicsRequestAsset, (scene.Heightmap != null ? scene.Heightmap.GetFloatsSerialised() : new float[scene.RegionInfo.RegionSizeX * scene.RegionInfo.RegionSizeY]), (float)scene.RegionInfo.RegionSettings.WaterHeight); EngineName = Name + " " + PE.BulletEngineVersion; EngineType = Name; // the above usually sets: // EngineType = "BulletSim" // EngineName = "BulletSim 1.1,3.25" with the version being "BulletsimWrapperVersion,BulletPhysicsEngineVersion" // "EngineName" is returned by the LSL function "osGetPhysicsEngineName" // "EngineType" is returned by the LSL function "osGetPhysicsEngineType" // Note that there is also "BulletEngineName" which comes from the parameter files and // specifies which Bullet DLL to load. } public void RemoveRegion(Scene scene) { if (!m_Enabled) return; } public void RegionLoaded(Scene scene) { if (!m_Enabled) return; mesher = scene.RequestModuleInterface(); if (mesher == null) m_log.WarnFormat("{0} No mesher. Things will not work well.", LogHeader); scene.PhysicsEnabled = true; } #endregion #region Initialization private void Initialise(IConfigSource config, Vector3 regionExtent) { _taintOperations = new List(); _postTaintOperations = new Dictionary(); _postStepOperations = new List(); PhysObjects = new Dictionary(); Shapes = new BSShapeCollection(this); m_simulatedTime = 0f; LastTimeStep = 0.1f; // Allocate pinned memory to pass parameters. UnmanagedParams = new ConfigurationParameters[1]; // Set default values for physics parameters plus any overrides from the ini file GetInitialParameterValues(config); // Force some parameters to values depending on other configurations // Only use heightmap terrain implementation if terrain larger than legacy size if ((uint)regionExtent.X > Constants.RegionSize || (uint)regionExtent.Y > Constants.RegionSize) { m_log.WarnFormat("{0} Forcing terrain implementation to heightmap for large region", LogHeader); BSParam.TerrainImplementation = (float)BSTerrainPhys.TerrainImplementation.Heightmap; } // Get the connection to the physics engine (could be native or one of many DLLs) PE = SelectUnderlyingBulletEngine(BulletEngineName); // Enable very detailed logging. // By creating an empty logger when not logging, the log message invocation code // can be left in and every call doesn't have to check for null. if (m_physicsLoggingEnabled) { PhysicsLogging = new LogWriter(m_physicsLoggingDir, m_physicsLoggingPrefix, m_physicsLoggingFileMinutes, m_physicsLoggingDoFlush); PhysicsLogging.ErrorLogger = m_log; // for DEBUG. Let's the logger output its own error messages. } else { PhysicsLogging = new LogWriter(); } // Allocate memory for returning of the updates and collisions from the physics engine m_collisionArray = new CollisionDesc[m_maxCollisionsPerFrame]; m_updateArray = new EntityProperties[m_maxUpdatesPerFrame]; // The bounding box for the simulated world. The origin is 0,0,0 unless we're // a child in a mega-region. // Bullet actually doesn't care about the extents of the simulated // area. It tracks active objects no matter where they are. Vector3 worldExtent = regionExtent; World = PE.Initialize(worldExtent, Params, m_maxCollisionsPerFrame, ref m_collisionArray, m_maxUpdatesPerFrame, ref m_updateArray); Constraints = new BSConstraintCollection(World); TerrainManager = new BSTerrainManager(this, worldExtent); TerrainManager.CreateInitialGroundPlaneAndTerrain(); // Put some informational messages into the log file. m_log.InfoFormat("{0} Linksets implemented with {1}", LogHeader, (BSLinkset.LinksetImplementation)BSParam.LinksetImplementation); InSimulationTime = false; m_initialized = true; // If the physics engine runs on its own thread, start same. if (BSParam.UseSeparatePhysicsThread) { // The physics simulation should happen independently of the heartbeat loop m_physicsThread = WorkManager.StartThread( BulletSPluginPhysicsThread, string.Format("{0} ({1})", BulletEngineName, RegionName)); } } // All default parameter values are set here. There should be no values set in the // variable definitions. private void GetInitialParameterValues(IConfigSource config) { ConfigurationParameters parms = new ConfigurationParameters(); UnmanagedParams[0] = parms; BSParam.SetParameterDefaultValues(this); if (config != null) { // If there are specifications in the ini file, use those values IConfig pConfig = config.Configs["BulletSim"]; if (pConfig != null) { BSParam.SetParameterConfigurationValues(this, pConfig); // There are two Bullet implementations to choose from BulletEngineName = pConfig.GetString("BulletEngine", "BulletUnmanaged"); // Very detailed logging for physics debugging // TODO: the boolean values can be moved to the normal parameter processing. m_physicsLoggingEnabled = pConfig.GetBoolean("PhysicsLoggingEnabled", false); m_physicsLoggingDir = pConfig.GetString("PhysicsLoggingDir", "."); m_physicsLoggingPrefix = pConfig.GetString("PhysicsLoggingPrefix", "physics-%REGIONNAME%-"); m_physicsLoggingFileMinutes = pConfig.GetInt("PhysicsLoggingFileMinutes", 5); m_physicsLoggingDoFlush = pConfig.GetBoolean("PhysicsLoggingDoFlush", false); m_physicsPhysicalDumpEnabled = pConfig.GetBoolean("PhysicsPhysicalDumpEnabled", false); // Very detailed logging for vehicle debugging VehicleLoggingEnabled = pConfig.GetBoolean("VehicleLoggingEnabled", false); VehiclePhysicalLoggingEnabled = pConfig.GetBoolean("VehiclePhysicalLoggingEnabled", false); // Do any replacements in the parameters m_physicsLoggingPrefix = m_physicsLoggingPrefix.Replace("%REGIONNAME%", RegionName); } else { // Nothing in the configuration INI file so assume unmanaged and other defaults. BulletEngineName = "BulletUnmanaged"; m_physicsLoggingEnabled = false; VehicleLoggingEnabled = false; } // The material characteristics. BSMaterials.InitializeFromDefaults(Params); if (pConfig != null) { // Let the user add new and interesting material property values. BSMaterials.InitializefromParameters(pConfig); } } } // A helper function that handles a true/false parameter and returns the proper float number encoding float ParamBoolean(IConfig config, string parmName, float deflt) { float ret = deflt; if (config.Contains(parmName)) { ret = ConfigurationParameters.numericFalse; if (config.GetBoolean(parmName, false)) { ret = ConfigurationParameters.numericTrue; } } return ret; } // Select the connection to the actual Bullet implementation. // The main engine selection is the engineName up to the first hypen. // So "Bullet-2.80-OpenCL-Intel" specifies the 'bullet' class here and the whole name // is passed to the engine to do its special selection, etc. private BSAPITemplate SelectUnderlyingBulletEngine(string engineName) { // For the moment, do a simple switch statement. // Someday do fancyness with looking up the interfaces in the assembly. BSAPITemplate ret = null; string selectionName = engineName.ToLower(); int hyphenIndex = engineName.IndexOf("-"); if (hyphenIndex > 0) selectionName = engineName.ToLower().Substring(0, hyphenIndex - 1); switch (selectionName) { case "bullet": case "bulletunmanaged": ret = new BSAPIUnman(engineName, this); break; case "bulletxna": ret = new BSAPIXNA(engineName, this); // Disable some features that are not implemented in BulletXNA m_log.InfoFormat("{0} Disabling some physics features not implemented by BulletXNA", LogHeader); m_log.InfoFormat("{0} Disabling ShouldUseBulletHACD", LogHeader); BSParam.ShouldUseBulletHACD = false; m_log.InfoFormat("{0} Disabling ShouldUseSingleConvexHullForPrims", LogHeader); BSParam.ShouldUseSingleConvexHullForPrims = false; m_log.InfoFormat("{0} Disabling ShouldUseGImpactShapeForPrims", LogHeader); BSParam.ShouldUseGImpactShapeForPrims = false; m_log.InfoFormat("{0} Setting terrain implimentation to Heightmap", LogHeader); BSParam.TerrainImplementation = (float)BSTerrainPhys.TerrainImplementation.Heightmap; break; } if (ret == null) { m_log.ErrorFormat("{0} COULD NOT SELECT BULLET ENGINE: '[BulletSim]PhysicsEngine' must be either 'BulletUnmanaged-*' or 'BulletXNA-*'", LogHeader); } else { m_log.InfoFormat("{0} Selected bullet engine {1} -> {2}/{3}", LogHeader, engineName, ret.BulletEngineName, ret.BulletEngineVersion); } return ret; } public override void Dispose() { // m_log.DebugFormat("{0}: Dispose()", LogHeader); // make sure no stepping happens while we're deleting stuff m_initialized = false; lock (PhysObjects) { foreach (KeyValuePair kvp in PhysObjects) { kvp.Value.Destroy(); } PhysObjects.Clear(); } // Now that the prims are all cleaned up, there should be no constraints left if (Constraints != null) { Constraints.Dispose(); Constraints = null; } if (Shapes != null) { Shapes.Dispose(); Shapes = null; } if (TerrainManager != null) { TerrainManager.ReleaseGroundPlaneAndTerrain(); TerrainManager.Dispose(); TerrainManager = null; } // Anything left in the unmanaged code should be cleaned out PE.Shutdown(World); // Not logging any more PhysicsLogging.Close(); } #endregion // Construction and Initialization #region Prim and Avatar addition and removal public override PhysicsActor AddAvatar(string avName, Vector3 position, Vector3 velocity, Vector3 size, bool isFlying) { m_log.ErrorFormat("{0}: CALL TO AddAvatar in BSScene. NOT IMPLEMENTED", LogHeader); return null; } public override PhysicsActor AddAvatar(uint localID, string avName, Vector3 position, Vector3 size, float footOffset, bool isFlying) { // m_log.DebugFormat("{0}: AddAvatar: {1}", LogHeader, avName); if (!m_initialized) return null; BSCharacter actor = new BSCharacter(localID, avName, this, position, Vector3.Zero, size, footOffset, isFlying); lock (PhysObjects) PhysObjects.Add(localID, actor); // TODO: Remove kludge someday. // We must generate a collision for avatars whether they collide or not. // This is required by OpenSim to update avatar animations, etc. lock (AvatarsInSceneLock) AvatarsInScene.Add(actor); return actor; } public override void RemoveAvatar(PhysicsActor actor) { // m_log.DebugFormat("{0}: RemoveAvatar", LogHeader); if (!m_initialized) return; BSCharacter bsactor = actor as BSCharacter; if (bsactor != null) { try { lock (PhysObjects) PhysObjects.Remove(bsactor.LocalID); // Remove kludge someday lock (AvatarsInSceneLock) AvatarsInScene.Remove(bsactor); } catch (Exception e) { m_log.WarnFormat("{0}: Attempt to remove avatar that is not in physics scene: {1}", LogHeader, e); } bsactor.Destroy(); // bsactor.dispose(); } else { m_log.ErrorFormat("{0}: Requested to remove avatar that is not a BSCharacter. ID={1}, type={2}", LogHeader, actor.LocalID, actor.GetType().Name); } } public override void RemovePrim(PhysicsActor prim) { if (!m_initialized) return; BSPhysObject bsprim = prim as BSPhysObject; if (bsprim != null) { DetailLog("{0},RemovePrim,call", bsprim.LocalID); // m_log.DebugFormat("{0}: RemovePrim. id={1}/{2}", LogHeader, bsprim.Name, bsprim.LocalID); try { lock (PhysObjects) PhysObjects.Remove(bsprim.LocalID); } catch (Exception e) { m_log.ErrorFormat("{0}: Attempt to remove prim that is not in physics scene: {1}", LogHeader, e); } bsprim.Destroy(); // bsprim.dispose(); } else { m_log.ErrorFormat("{0}: Attempt to remove prim that is not a BSPrim type.", LogHeader); } } public override PhysicsActor AddPrimShape(string primName, PrimitiveBaseShape pbs, Vector3 position, Vector3 size, Quaternion rotation, bool isPhysical, uint localID) { // m_log.DebugFormat("{0}: AddPrimShape2: {1}", LogHeader, primName); if (!m_initialized) return null; // DetailLog("{0},BSScene.AddPrimShape,call", localID); BSPhysObject prim = new BSPrimLinkable(localID, primName, this, position, size, rotation, pbs, isPhysical); lock (PhysObjects) PhysObjects.Add(localID, prim); return prim; } #endregion // Prim and Avatar addition and removal #region Simulation // Call from the simulator to send physics information to the simulator objects. // This pushes all the collision and property update events into the objects in // the simulator and, since it is on the heartbeat thread, there is an implicit // locking of those data structures from other heartbeat events. // If the physics engine is running on a separate thread, the update information // will be in the ObjectsWithCollions and ObjectsWithUpdates structures. public override float Simulate(float timeStep) { if (!BSParam.UseSeparatePhysicsThread) { DoPhysicsStep(timeStep); } return SendUpdatesToSimulator(timeStep); } // Call the physics engine to do one 'timeStep' and collect collisions and updates // into ObjectsWithCollisions and ObjectsWithUpdates data structures. private void DoPhysicsStep(float timeStep) { // prevent simulation until we've been initialized if (!m_initialized) return; LastTimeStep = timeStep; int updatedEntityCount = 0; int collidersCount = 0; int beforeTime = Util.EnvironmentTickCount(); int simTime = 0; int numTaints = 0; int numSubSteps = 0; lock (PhysicsEngineLock) { InSimulationTime = true; // update the prim states while we know the physics engine is not busy numTaints += ProcessTaints(); // Some of the physical objects requre individual, pre-step calls // (vehicles and avatar movement, in particular) TriggerPreStepEvent(timeStep); // the prestep actions might have added taints numTaints += ProcessTaints(); // The following causes the unmanaged code to output ALL the values found in ALL the objects in the world. // Only enable this in a limited test world with few objects. if (m_physicsPhysicalDumpEnabled) PE.DumpAllInfo(World); // step the physical world one interval m_simulationStep++; try { numSubSteps = PE.PhysicsStep(World, timeStep, m_maxSubSteps, m_fixedTimeStep, out updatedEntityCount, out collidersCount); } catch (Exception e) { m_log.WarnFormat("{0},PhysicsStep Exception: nTaints={1}, substeps={2}, updates={3}, colliders={4}, e={5}", LogHeader, numTaints, numSubSteps, updatedEntityCount, collidersCount, e); DetailLog("{0},PhysicsStepException,call, nTaints={1}, substeps={2}, updates={3}, colliders={4}", DetailLogZero, numTaints, numSubSteps, updatedEntityCount, collidersCount); updatedEntityCount = 0; collidersCount = 0; } // Make the physics engine dump useful statistics periodically if (PhysicsMetricDumpFrames != 0 && ((m_simulationStep % PhysicsMetricDumpFrames) == 0)) PE.DumpPhysicsStatistics(World); InSimulationTime = false; // Some actors want to know when the simulation step is complete. TriggerPostStepEvent(timeStep); // In case there were any parameter updates that happened during the simulation step numTaints += ProcessTaints(); InSimulationTime = false; } // Get a value for 'now' so all the collision and update routines don't have to get their own. SimulationNowTime = Util.EnvironmentTickCount(); // Send collision information to the colliding objects. The objects decide if the collision // is 'real' (like linksets don't collide with themselves) and the individual objects // know if the simulator has subscribed to collisions. lock (CollisionLock) { if (collidersCount > 0) { lock (PhysObjects) { if (collidersCount > m_collisionArray.Length) collidersCount = m_collisionArray.Length; for (int ii = 0; ii < collidersCount; ii++) { uint cA = m_collisionArray[ii].aID; uint cB = m_collisionArray[ii].bID; Vector3 point = m_collisionArray[ii].point; Vector3 normal = m_collisionArray[ii].normal; float penetration = m_collisionArray[ii].penetration; SendCollision(cA, cB, point, normal, penetration); SendCollision(cB, cA, point, -normal, penetration); } } } } // If any of the objects had updated properties, tell the managed objects about the update // and remember that there was a change so it will be passed to the simulator. lock (UpdateLock) { if (updatedEntityCount > 0) { lock (PhysObjects) { for (int ii = 0; ii < updatedEntityCount; ii++) { EntityProperties entprop = m_updateArray[ii]; BSPhysObject pobj; if (PhysObjects.TryGetValue(entprop.ID, out pobj)) { if (pobj.IsInitialized) pobj.UpdateProperties(entprop); } } } } } simTime = Util.EnvironmentTickCountSubtract(beforeTime); if (PhysicsLogging.Enabled) { DetailLog("{0},DoPhysicsStep,complete,frame={1}, nTaints={2}, simTime={3}, substeps={4}, updates={5}, colliders={6}, objWColl={7}", DetailLogZero, m_simulationStep, numTaints, simTime, numSubSteps, updatedEntityCount, collidersCount, ObjectsWithCollisions.Count); } // The following causes the unmanaged code to output ALL the values found in ALL the objects in the world. // Only enable this in a limited test world with few objects. if (m_physicsPhysicalDumpEnabled) PE.DumpAllInfo(World); // The physics engine returns the number of milliseconds it simulated this call. // These are summed and normalized to one second and divided by 1000 to give the reported physics FPS. // Multiply by a fixed nominal frame rate to give a rate similar to the simulator (usually 55). // m_simulatedTime += (float)numSubSteps * m_fixedTimeStep * 1000f * NominalFrameRate; m_simulatedTime += (float)numSubSteps * m_fixedTimeStep; } // Called by a BSPhysObject to note that it has changed properties and this information // should be passed up to the simulator at the proper time. // Note: this is called by the BSPhysObject from invocation via DoPhysicsStep() above so // this is is under UpdateLock. public void PostUpdate(BSPhysObject updatee) { lock (UpdateLock) { ObjectsWithUpdates.Add(updatee); } } // The simulator thinks it is physics time so return all the collisions and position // updates that were collected in actual physics simulation. private float SendUpdatesToSimulator(float timeStep) { if (!m_initialized) return 5.0f; DetailLog("{0},SendUpdatesToSimulator,collisions={1},updates={2},simedTime={3}", BSScene.DetailLogZero, ObjectsWithCollisions.Count, ObjectsWithUpdates.Count, m_simulatedTime); // Push the collisions into the simulator. lock (CollisionLock) { if (ObjectsWithCollisions.Count > 0) { foreach (BSPhysObject bsp in ObjectsWithCollisions) if (!bsp.SendCollisions()) { // If the object is done colliding, see that it's removed from the colliding list ObjectsWithNoMoreCollisions.Add(bsp); } } // This is a kludge to get avatar movement updates. // The simulator expects collisions for avatars even if there are have been no collisions. // The event updates avatar animations and stuff. // If you fix avatar animation updates, remove this overhead and let normal collision processing happen. // Note that we get a copy of the list to search because SendCollision() can take a while. HashSet tempAvatarsInScene; lock (AvatarsInSceneLock) { tempAvatarsInScene = new HashSet(AvatarsInScene); } foreach (BSPhysObject actor in tempAvatarsInScene) { if (!ObjectsWithCollisions.Contains(actor)) // don't call avatars twice actor.SendCollisions(); } tempAvatarsInScene = null; // Objects that are done colliding are removed from the ObjectsWithCollisions list. // Not done above because it is inside an iteration of ObjectWithCollisions. // This complex collision processing is required to create an empty collision // event call after all real collisions have happened on an object. This allows // the simulator to generate the 'collision end' event. if (ObjectsWithNoMoreCollisions.Count > 0) { foreach (BSPhysObject po in ObjectsWithNoMoreCollisions) ObjectsWithCollisions.Remove(po); ObjectsWithNoMoreCollisions.Clear(); } } // Call the simulator for each object that has physics property updates. HashSet updatedObjects = null; lock (UpdateLock) { if (ObjectsWithUpdates.Count > 0) { updatedObjects = ObjectsWithUpdates; ObjectsWithUpdates = new HashSet(); } } if (updatedObjects != null) { foreach (BSPhysObject obj in updatedObjects) { obj.RequestPhysicsterseUpdate(); } updatedObjects.Clear(); } // Return the framerate simulated to give the above returned results. // (Race condition here but this is just bookkeeping so rare mistakes do not merit a lock). float simTime = m_simulatedTime / timeStep; m_simulatedTime = 0f; return simTime; } // Something has collided private void SendCollision(uint localID, uint collidingWith, Vector3 collidePoint, Vector3 collideNormal, float penetration) { if (localID <= TerrainManager.HighestTerrainID) { return; // don't send collisions to the terrain } BSPhysObject collider; // NOTE that PhysObjects was locked before the call to SendCollision(). if (!PhysObjects.TryGetValue(localID, out collider)) { // If the object that is colliding cannot be found, just ignore the collision. DetailLog("{0},BSScene.SendCollision,colliderNotInObjectList,id={1},with={2}", DetailLogZero, localID, collidingWith); return; } // Note: the terrain is not in the physical object list so 'collidee' can be null when Collide() is called. BSPhysObject collidee = null; PhysObjects.TryGetValue(collidingWith, out collidee); // DetailLog("{0},BSScene.SendCollision,collide,id={1},with={2}", DetailLogZero, localID, collidingWith); if (collider.IsInitialized) { if (collider.Collide(collidee, collidePoint, collideNormal, penetration)) { // If a collision was 'good', remember to send it to the simulator lock (CollisionLock) { ObjectsWithCollisions.Add(collider); } } } return; } public void BulletSPluginPhysicsThread() { m_updateWaitEvent = new ManualResetEvent(false); while (m_initialized) { int beginSimulationRealtimeMS = Util.EnvironmentTickCount(); if (BSParam.Active) DoPhysicsStep(BSParam.PhysicsTimeStep); int simulationRealtimeMS = Util.EnvironmentTickCountSubtract(beginSimulationRealtimeMS); int simulationTimeVsRealtimeDifferenceMS = ((int)(BSParam.PhysicsTimeStep*1000f)) - simulationRealtimeMS; if (simulationTimeVsRealtimeDifferenceMS > 0) { // The simulation of the time interval took less than realtime. // Do a wait for the rest of realtime. m_updateWaitEvent.WaitOne(simulationTimeVsRealtimeDifferenceMS); //Thread.Sleep(simulationTimeVsRealtimeDifferenceMS); } else { // The simulation took longer than realtime. // Do some scaling of simulation time. // TODO. DetailLog("{0},BulletSPluginPhysicsThread,longerThanRealtime={1}", BSScene.DetailLogZero, simulationTimeVsRealtimeDifferenceMS); } Watchdog.UpdateThread(); } Watchdog.RemoveThread(); } #endregion // Simulation #region Terrain public override void SetTerrain(float[] heightMap) { TerrainManager.SetTerrain(heightMap); } public override void SetWaterLevel(float baseheight) { SimpleWaterLevel = baseheight; } public override void DeleteTerrain() { // m_log.DebugFormat("{0}: DeleteTerrain()", LogHeader); } #endregion // Terrain #region Raycast public override bool SupportsRayCast() { return BSParam.UseBulletRaycast; } public override bool SupportsRaycastWorldFiltered() { return BSParam.UseBulletRaycast; } /// /// Queue a raycast against the physics scene. /// The provided callback method will be called when the raycast is complete /// /// Many physics engines don't support collision testing at the same time as /// manipulating the physics scene, so we queue the request up and callback /// a custom method when the raycast is complete. /// This allows physics engines that give an immediate result to callback immediately /// and ones that don't, to callback when it gets a result back. /// public delegate void RayCallback(List list); /// /// ODE for example will not allow you to change the scene while collision testing or /// it asserts, 'opteration not valid for locked space'. This includes adding a ray to the scene. /// /// This is named RayCastWorld to not conflict with modrex's Raycast method. /// /// Origin of the ray /// Direction of the ray /// Length of ray in meters /// Method to call when the raycast is complete public override void RaycastWorld(Vector3 position, Vector3 direction, float length, RaycastCallback retMethod) { if (retMethod != null) { if (BSParam.UseBulletRaycast) { Vector3 posFrom = position; Vector3 posTo = Vector3.Normalize(direction) * length + position; TaintedObject(DetailLogZero, "BSScene.RaycastWorld1", delegate () { RaycastHit hitInfo = PE.RayTest2(World, posFrom, posTo, 0xffff, 0xffff); retMethod(true, hitInfo.Point, hitInfo.ID, hitInfo.Fraction, hitInfo.Normal); }); } else { retMethod(false, Vector3.Zero, 0, 999999999999f, Vector3.Zero); } } } public override void RaycastWorld(Vector3 position, Vector3 direction, float length, int count, RayCallback retMethod) { if (retMethod != null) { if (BSParam.UseBulletRaycast) { List hitInfo = RaycastWorld(position, direction, length, count); retMethod(hitInfo); } else { retMethod(new List()); } } } public override List RaycastWorld(Vector3 position, Vector3 direction, float length, int count) { return (List)RaycastWorld(position, direction, length, count, RayFilterFlags.All); } public override object RaycastWorld(Vector3 position, Vector3 direction, float length, int count, RayFilterFlags filter) { List ret = new List(); if (BSParam.UseBulletRaycast) { uint collisionFilter = 0; uint collisionMask = 0; if ((filter & RayFilterFlags.land) != 0) { collisionFilter |= BulletSimData.CollisionTypeMasks[CollisionType.Terrain].group; collisionMask |= BulletSimData.CollisionTypeMasks[CollisionType.Terrain].mask; } if ((filter & RayFilterFlags.agent) != 0) { collisionFilter |= BulletSimData.CollisionTypeMasks[CollisionType.Avatar].group; collisionMask |= BulletSimData.CollisionTypeMasks[CollisionType.Avatar].mask; } if ((filter & RayFilterFlags.nonphysical) != 0) { collisionFilter |= BulletSimData.CollisionTypeMasks[CollisionType.Static].group; collisionMask |= BulletSimData.CollisionTypeMasks[CollisionType.Static].mask; } if ((filter & RayFilterFlags.physical) != 0) { collisionFilter |= BulletSimData.CollisionTypeMasks[CollisionType.Dynamic].group; collisionMask |= BulletSimData.CollisionTypeMasks[CollisionType.Dynamic].mask; } // if ((filter & RayFilterFlags.phantom) != 0) // { // collisionFilter |= BulletSimData.CollisionTypeMasks[CollisionType.VolumeDetect].group; // collisionMask |= BulletSimData.CollisionTypeMasks[CollisionType.VolumeDetect].mask; // } if ((filter & RayFilterFlags.volumedtc) != 0) { collisionFilter |= BulletSimData.CollisionTypeMasks[CollisionType.VolumeDetect].group; collisionMask |= BulletSimData.CollisionTypeMasks[CollisionType.VolumeDetect].mask; } DetailLog("{0},RaycastWorld,pos={1},dir={2},len={3},count={4},filter={5},filter={6},mask={7}", DetailLogZero, position, direction, length, count, filter, collisionFilter, collisionMask); // NOTE: locking ensures the physics engine is not executing. // The caller might have to wait for the physics engine to finish. lock (PhysicsEngineLock) { Vector3 posFrom = position; Vector3 posTo = Vector3.Normalize(direction) * length + position; DetailLog("{0},RaycastWorld,RayTest2,from={1},to={2}", DetailLogZero, posFrom, posTo); RaycastHit hitInfo = PE.RayTest2(World, posFrom, posTo, collisionFilter, collisionMask); if (hitInfo.hasHit()) { ContactResult result = new ContactResult(); result.Pos = hitInfo.Point; result.Normal = hitInfo.Normal; result.ConsumerID = hitInfo.ID; result.Depth = hitInfo.Fraction; ret.Add(result); DetailLog("{0},RaycastWorld,hit,pos={1},norm={2},depth={3},id={4}", DetailLogZero, result.Pos, result.Normal, result.Depth, result.ConsumerID); } } } return ret; } #endregion Raycast public override Dictionary GetTopColliders() { Dictionary topColliders; lock (PhysObjects) { foreach (KeyValuePair kvp in PhysObjects) { kvp.Value.ComputeCollisionScore(); } List orderedPrims = new List(PhysObjects.Values); orderedPrims.OrderByDescending(p => p.CollisionScore); topColliders = orderedPrims.Take(25).ToDictionary(p => p.LocalID, p => p.CollisionScore); } return topColliders; } #region Extensions public override object Extension(string pFunct, params object[] pParams) { DetailLog("{0} BSScene.Extension,op={1}", DetailLogZero, pFunct); return base.Extension(pFunct, pParams); } #endregion // Extensions public static string PrimitiveBaseShapeToString(PrimitiveBaseShape pbs) { float pathShearX = pbs.PathShearX < 128 ? (float)pbs.PathShearX * 0.01f : (float)(pbs.PathShearX - 256) * 0.01f; float pathShearY = pbs.PathShearY < 128 ? (float)pbs.PathShearY * 0.01f : (float)(pbs.PathShearY - 256) * 0.01f; float pathBegin = (float)pbs.PathBegin * 2.0e-5f; float pathEnd = 1.0f - (float)pbs.PathEnd * 2.0e-5f; float pathScaleX = (float)(200 - pbs.PathScaleX) * 0.01f; float pathScaleY = (float)(200 - pbs.PathScaleY) * 0.01f; float pathTaperX = pbs.PathTaperX * 0.01f; float pathTaperY = pbs.PathTaperY * 0.01f; float profileBegin = (float)pbs.ProfileBegin * 2.0e-5f; float profileEnd = 1.0f - (float)pbs.ProfileEnd * 2.0e-5f; float profileHollow = (float)pbs.ProfileHollow * 2.0e-5f; if (profileHollow > 0.95f) profileHollow = 0.95f; StringBuilder buff = new StringBuilder(); buff.Append("shape="); buff.Append(((ProfileShape)pbs.ProfileShape).ToString()); buff.Append(","); buff.Append("hollow="); buff.Append(((HollowShape)pbs.HollowShape).ToString()); buff.Append(","); buff.Append("pathCurve="); buff.Append(((Extrusion)pbs.PathCurve).ToString()); buff.Append(","); buff.Append("profCurve="); buff.Append(((Extrusion)pbs.ProfileCurve).ToString()); buff.Append(","); buff.Append("profHollow="); buff.Append(profileHollow.ToString()); buff.Append(","); buff.Append("pathBegEnd="); buff.Append(pathBegin.ToString()); buff.Append("/"); buff.Append(pathEnd.ToString()); buff.Append(","); buff.Append("profileBegEnd="); buff.Append(profileBegin.ToString()); buff.Append("/"); buff.Append(profileEnd.ToString()); buff.Append(","); buff.Append("scaleXY="); buff.Append(pathScaleX.ToString()); buff.Append("/"); buff.Append(pathScaleY.ToString()); buff.Append(","); buff.Append("shearXY="); buff.Append(pathShearX.ToString()); buff.Append("/"); buff.Append(pathShearY.ToString()); buff.Append(","); buff.Append("taperXY="); buff.Append(pbs.PathTaperX.ToString()); buff.Append("/"); buff.Append(pbs.PathTaperY.ToString()); buff.Append(","); buff.Append("skew="); buff.Append(pbs.PathSkew.ToString()); buff.Append(","); buff.Append("twist/Beg="); buff.Append(pbs.PathTwist.ToString()); buff.Append("/"); buff.Append(pbs.PathTwistBegin.ToString()); return buff.ToString(); } #region Taints // The simulation execution order is: // Simulate() // DoOneTimeTaints // TriggerPreStepEvent // DoOneTimeTaints // Step() // ProcessAndSendToSimulatorCollisions // ProcessAndSendToSimulatorPropertyUpdates // TriggerPostStepEvent // Calls to the PhysicsActors can't directly call into the physics engine // because it might be busy. We delay changes to a known time. // We rely on C#'s closure to save and restore the context for the delegate. // NOTE: 'inTaintTime' is no longer used. This entry exists so all the calls don't have to be changed. // public void TaintedObject(bool inTaintTime, String pIdent, TaintCallback pCallback) // { // TaintedObject(BSScene.DetailLogZero, pIdent, pCallback); // } // NOTE: 'inTaintTime' is no longer used. This entry exists so all the calls don't have to be changed. public void TaintedObject(bool inTaintTime, uint pOriginator, String pIdent, TaintCallback pCallback) { TaintedObject(m_physicsLoggingEnabled ? pOriginator.ToString() : BSScene.DetailLogZero, pIdent, pCallback); } public void TaintedObject(uint pOriginator, String pIdent, TaintCallback pCallback) { TaintedObject(m_physicsLoggingEnabled ? pOriginator.ToString() : BSScene.DetailLogZero, pIdent, pCallback); } // Sometimes a potentially tainted operation can be used in and out of taint time. // This routine executes the command immediately if in taint-time otherwise it is queued. public void TaintedObject(string pOriginator, string pIdent, TaintCallback pCallback) { if (!m_initialized) return; /* mantis 8397 ??? avoid out of order operations ??? if (Monitor.TryEnter(PhysicsEngineLock)) { // If we can get exclusive access to the physics engine, just do the operation pCallback(); Monitor.Exit(PhysicsEngineLock); } else { */ // The physics engine is busy, queue the operation lock (_taintLock) { _taintOperations.Add(new TaintCallbackEntry(pOriginator, pIdent, pCallback)); } // } } private void TriggerPreStepEvent(float timeStep) { PreStepAction actions = BeforeStep; if (actions != null) actions(timeStep); } private void TriggerPostStepEvent(float timeStep) { PostStepAction actions = AfterStep; if (actions != null) actions(timeStep); } // When someone tries to change a property on a BSPrim or BSCharacter, the object queues // a callback into itself to do the actual property change. That callback is called // here just before the physics engine is called to step the simulation. // Returns the number of taints processed // NOTE: Called while PhysicsEngineLock is locked public int ProcessTaints() { int ret = 0; ret += ProcessRegularTaints(); ret += ProcessPostTaintTaints(); return ret; } // Returns the number of taints processed // NOTE: Called while PhysicsEngineLock is locked private int ProcessRegularTaints() { int ret = 0; if (m_initialized && _taintOperations.Count > 0) // save allocating new list if there is nothing to process { // swizzle a new list into the list location so we can process what's there List oldList; lock (_taintLock) { oldList = _taintOperations; _taintOperations = new List(); } foreach (TaintCallbackEntry tcbe in oldList) { try { DetailLog("{0},BSScene.ProcessTaints,doTaint,id={1}", tcbe.originator, tcbe.ident); // DEBUG DEBUG DEBUG tcbe.callback(); ret++; } catch (Exception e) { m_log.ErrorFormat("{0}: ProcessTaints: {1}: Exception: {2}", LogHeader, tcbe.ident, e); } } oldList.Clear(); } return ret; } // Schedule an update to happen after all the regular taints are processed. // Note that new requests for the same operation ("ident") for the same object ("ID") // will replace any previous operation by the same object. public void PostTaintObject(String ident, uint ID, TaintCallback callback) { string IDAsString = ID.ToString(); string uniqueIdent = ident + "-" + IDAsString; lock (_taintLock) { _postTaintOperations[uniqueIdent] = new TaintCallbackEntry(IDAsString, uniqueIdent, callback); } return; } // Taints that happen after the normal taint processing but before the simulation step. // Returns the number of taints processed // NOTE: Called while PhysicsEngineLock is locked private int ProcessPostTaintTaints() { int ret = 0; if (m_initialized && _postTaintOperations.Count > 0) { Dictionary oldList; lock (_taintLock) { oldList = _postTaintOperations; _postTaintOperations = new Dictionary(); } foreach (KeyValuePair kvp in oldList) { try { DetailLog("{0},BSScene.ProcessPostTaintTaints,doTaint,id={1}", DetailLogZero, kvp.Key); // DEBUG DEBUG DEBUG kvp.Value.callback(); ret++; } catch (Exception e) { m_log.ErrorFormat("{0}: ProcessPostTaintTaints: {1}: Exception: {2}", LogHeader, kvp.Key, e); } } oldList.Clear(); } return ret; } #endregion // Taints #region IPhysicsParameters // Get the list of parameters this physics engine supports public PhysParameterEntry[] GetParameterList() { BSParam.BuildParameterTable(); return BSParam.SettableParameters; } // Set parameter on a specific or all instances. // Return 'false' if not able to set the parameter. // Setting the value in the m_params block will change the value the physics engine // will use the next time since it's pinned and shared memory. // Some of the values require calling into the physics engine to get the new // value activated ('terrainFriction' for instance). public bool SetPhysicsParameter(string parm, string val, uint localID) { bool ret = false; BSParam.ParameterDefnBase theParam; if (BSParam.TryGetParameter(parm, out theParam)) { // Set the value in the C# code theParam.SetValue(this, val); // Optionally set the parameter in the unmanaged code if (theParam.HasSetOnObject) { // update all the localIDs specified // If the local ID is APPLY_TO_NONE, just change the default value // If the localID is APPLY_TO_ALL change the default value and apply the new value to all the lIDs // If the localID is a specific object, apply the parameter change to only that object List objectIDs = new List(); switch (localID) { case PhysParameterEntry.APPLY_TO_NONE: // This will cause a call into the physical world if some operation is specified (SetOnObject). objectIDs.Add(TERRAIN_ID); TaintedUpdateParameter(parm, objectIDs, val); break; case PhysParameterEntry.APPLY_TO_ALL: lock (PhysObjects) objectIDs = new List(PhysObjects.Keys); TaintedUpdateParameter(parm, objectIDs, val); break; default: // setting only one localID objectIDs.Add(localID); TaintedUpdateParameter(parm, objectIDs, val); break; } } ret = true; } return ret; } // schedule the actual updating of the paramter to when the phys engine is not busy private void TaintedUpdateParameter(string parm, List lIDs, string val) { string xval = val; List xlIDs = lIDs; string xparm = parm; TaintedObject(DetailLogZero, "BSScene.UpdateParameterSet", delegate() { BSParam.ParameterDefnBase thisParam; if (BSParam.TryGetParameter(xparm, out thisParam)) { if (thisParam.HasSetOnObject) { foreach (uint lID in xlIDs) { BSPhysObject theObject = null; if (PhysObjects.TryGetValue(lID, out theObject)) thisParam.SetOnObject(this, theObject); } } } }); } // Get parameter. // Return 'false' if not able to get the parameter. public bool GetPhysicsParameter(string parm, out string value) { string val = String.Empty; bool ret = false; BSParam.ParameterDefnBase theParam; if (BSParam.TryGetParameter(parm, out theParam)) { val = theParam.GetValue(this); ret = true; } value = val; return ret; } #endregion IPhysicsParameters // Invoke the detailed logger and output something if it's enabled. public void DetailLog(string msg, params Object[] args) { PhysicsLogging.Write(msg, args); } // Used to fill in the LocalID when there isn't one. It's the correct number of characters. public const string DetailLogZero = "0000000000"; } }