/* * Copyright (c) Contributors, http://opensimulator.org/ * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSimulator Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ using System; using System.IO; using System.Text; using System.Reflection; using System.Xml; using System.Xml.Serialization; using OpenSim.Data; using OpenSim.Framework; using OpenSim.Region.Framework.Interfaces; using OpenMetaverse; using log4net; namespace OpenSim.Region.Framework.Scenes { /// /// A new version of the old Channel class, simplified /// public class TerrainChannel : ITerrainChannel { private static readonly ILog m_log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType); private static string LogHeader = "[TERRAIN CHANNEL]"; protected TerrainData m_terrainData; public int Width { get { return m_terrainData.SizeX; } } // X dimension // Unfortunately, for historical reasons, in this module 'Width' is X and 'Height' is Y public int Height { get { return m_terrainData.SizeY; } } // Y dimension public int Altitude { get { return 0; } } // Y dimension // Default, not-often-used builder public TerrainChannel() { m_terrainData = new TerrainData((int)Constants.RegionSize, (int)Constants.RegionSize, (int)Constants.RegionHeight); FlatLand(); // PinHeadIsland(); } // Create terrain of given size public TerrainChannel(int pX, int pY) { m_terrainData = new TerrainData(pX, pY, (int)Constants.RegionHeight); } // Create terrain of specified size and initialize with specified terrain. // TODO: join this with the terrain initializers. public TerrainChannel(String type, int pX, int pY, int pZ) { m_terrainData = new TerrainData(pX, pY, pZ); if (type.Equals("flat")) FlatLand(); else PinHeadIsland(); } // Create channel passed a heightmap and expected dimensions of the region. // The heightmap might not fit the passed size so accomodations must be made. public TerrainChannel(double[,] pM, int pSizeX, int pSizeY, int pAltitude) { int hmSizeX = pM.GetLength(0); int hmSizeY = pM.GetLength(1); m_terrainData = new TerrainData(pSizeX, pSizeY, pAltitude); for (int xx = 0; xx < pSizeX; xx++) for (int yy = 0; yy < pSizeY; yy++) if (xx > hmSizeX || yy > hmSizeY) m_terrainData[xx, yy] = TerrainData.DefaultTerrainHeight; else m_terrainData[xx, yy] = (float)pM[xx, yy]; } public TerrainChannel(TerrainData pTerrData) { m_terrainData = pTerrData; } #region ITerrainChannel Members // ITerrainChannel.MakeCopy() public ITerrainChannel MakeCopy() { return this.Copy(); } // ITerrainChannel.GetTerrainData() public TerrainData GetTerrainData() { return m_terrainData; } // This one dimensional version is ordered so height = map[y*sizeX+x]; public float[] GetFloatsSerialised() { return m_terrainData.GetFloatsSerialized(); } // ITerrainChannel.GetDoubles() public double[,] GetDoubles() { double[,] heights = new double[Width, Height]; int idx = 0; // index into serialized array for (int ii = 0; ii < Width; ii++) { for (int jj = 0; jj < Height; jj++) { heights[ii, jj] = (double)m_terrainData[ii, jj]; idx++; } } return heights; } // ITerrainChannel.this[x,y] public float this[int x, int y] { get { if (x < 0 || x >= Width || y < 0 || y >= Height) return 0; return m_terrainData[x, y]; } set { if (float.IsNaN(value) || float.IsInfinity(value)) return; m_terrainData[x, y] = value; } } public float GetHeight(float x, float y) { return m_terrainData.GetHeight(x, y); } public float GetHeightAtXYZ(float x, float y, float z) { return m_terrainData.GetHeight(x, y); } // ITerrainChannel.Tainted() public bool Tainted(int x, int y) { return m_terrainData.IsTaintedAt(x, y); } // ITerrainChannel.SaveToXmlString() public string SaveToXmlString() { XmlWriterSettings settings = new XmlWriterSettings(); settings.Encoding = Util.UTF8; using (StringWriter sw = new StringWriter()) { using (XmlWriter writer = XmlWriter.Create(sw, settings)) { WriteXml(writer); } string output = sw.ToString(); return output; } } // ITerrainChannel.LoadFromXmlString() public void LoadFromXmlString(string data) { using(StringReader sr = new StringReader(data)) { using(XmlTextReader reader = new XmlTextReader(sr)) { reader.DtdProcessing = DtdProcessing.Ignore; ReadXml(reader); } } } // ITerrainChannel.Merge public void Merge(ITerrainChannel newTerrain, Vector3 displacement, float radianRotation, Vector2 rotationDisplacement) { m_log.DebugFormat("{0} Merge. inSize=<{1},{2}>, disp={3}, rot={4}, rotDisp={5}, outSize=<{6},{7}>", LogHeader, newTerrain.Width, newTerrain.Height, displacement, radianRotation, rotationDisplacement, m_terrainData.SizeX, m_terrainData.SizeY); for (int xx = 0; xx < newTerrain.Width; xx++) { for (int yy = 0; yy < newTerrain.Height; yy++) { int dispX = (int)displacement.X; int dispY = (int)displacement.Y; float newHeight = (float)newTerrain[xx, yy] + displacement.Z; if (radianRotation == 0) { // If no rotation, place the new height in the specified location dispX += xx; dispY += yy; if (dispX >= 0 && dispX < m_terrainData.SizeX && dispY >= 0 && dispY < m_terrainData.SizeY) { m_terrainData[dispX, dispY] = newHeight; } } else { // If rotating, we have to smooth the result because the conversion // to ints will mean heightmap entries will not get changed // First compute the rotation location for the new height. dispX += (int)(rotationDisplacement.X + ((float)xx - rotationDisplacement.X) * Math.Cos(radianRotation) - ((float)yy - rotationDisplacement.Y) * Math.Sin(radianRotation) ); dispY += (int)(rotationDisplacement.Y + ((float)xx - rotationDisplacement.X) * Math.Sin(radianRotation) + ((float)yy - rotationDisplacement.Y) * Math.Cos(radianRotation) ); if (dispX >= 0 && dispX < m_terrainData.SizeX && dispY >= 0 && dispY < m_terrainData.SizeY) { float oldHeight = m_terrainData[dispX, dispY]; // Smooth the heights around this location if the old height is far from this one for (int sxx = dispX - 2; sxx < dispX + 2; sxx++) { for (int syy = dispY - 2; syy < dispY + 2; syy++) { if (sxx >= 0 && sxx < m_terrainData.SizeX && syy >= 0 && syy < m_terrainData.SizeY) { if (sxx == dispX && syy == dispY) { // Set height for the exact rotated point m_terrainData[dispX, dispY] = newHeight; } else { if (Math.Abs(m_terrainData[sxx, syy] - newHeight) > 1f) { // If the adjacent height is far off, force it to this height m_terrainData[sxx, syy] = newHeight; } } } } } } if (dispX >= 0 && dispX < m_terrainData.SizeX && dispY >= 0 && dispY < m_terrainData.SizeY) { m_terrainData[dispX, dispY] = (float)newTerrain[xx, yy]; } } } } } /// /// A new version of terrain merge that processes the terrain in a specific order and corrects the problems with rotated terrains /// having 'holes' in that need to be smoothed. The correct way to rotate something is to iterate over the target, taking data from /// the source, not the other way around. This ensures that the target has no holes in it. /// The processing order of an incoming terrain is: /// 1. Apply rotation /// 2. Apply bounding rectangle /// 3. Apply displacement /// rotationCenter is no longer needed and has been discarded. /// /// /// <x, y, z> /// /// <x, y> /// <x, y> public void MergeWithBounding(ITerrainChannel newTerrain, Vector3 displacement, float rotationDegrees, Vector2 boundingOrigin, Vector2 boundingSize) { m_log.DebugFormat("{0} MergeWithBounding: inSize=<{1},{2}>, rot={3}, boundingOrigin={4}, boundingSize={5}, disp={6}, outSize=<{7},{8}>", LogHeader, newTerrain.Width, newTerrain.Height, rotationDegrees, boundingOrigin.ToString(), boundingSize.ToString(), displacement, m_terrainData.SizeX, m_terrainData.SizeY); // get the size of the incoming terrain int baseX = newTerrain.Width; int baseY = newTerrain.Height; // create an intermediate terrain map that is 25% bigger on each side that we can work with to handle rotation int offsetX = baseX / 4; // the original origin will now be at these coordinates so now we can have imaginary negative coordinates ;) int offsetY = baseY / 4; int tmpX = baseX + baseX / 2; int tmpY = baseY + baseY / 2; int centreX = tmpX / 2; int centreY = tmpY / 2; TerrainData terrain_tmp = new TerrainData(tmpX, tmpY, (int)Constants.RegionHeight); for (int xx = 0; xx < tmpX; xx++) for (int yy = 0; yy < tmpY; yy++) terrain_tmp[xx, yy] = -65535f; //use this height like an 'alpha' mask channel double radianRotation = Math.PI * rotationDegrees / 180f; double cosR = Math.Cos(radianRotation); double sinR = Math.Sin(radianRotation); if (rotationDegrees < 0f) rotationDegrees += 360f; //-90=270 -180=180 -270=90 // So first we apply the rotation to the incoming terrain, storing the result in terrain_tmp // We special case orthogonal rotations for accuracy because even using double precision math, Math.Cos(90 degrees) is never fully 0 // and we can never rotate around a centre 'pixel' because the 'bitmap' size is always even int x, y, sx, sy; for (y = 0; y <= tmpY; y++) { for (x = 0; x <= tmpX; x++) { if (rotationDegrees == 0f) { sx = x - offsetX; sy = y - offsetY; } else if (rotationDegrees == 90f) { sx = y - offsetX; sy = tmpY - 1 - x - offsetY; } else if (rotationDegrees == 180f) { sx = tmpX - 1 - x - offsetX; sy = tmpY - 1 - y - offsetY; } else if (rotationDegrees == 270f) { sx = tmpX - 1 - y - offsetX; sy = x - offsetY; } else { // arbitary rotation: hmmm should I be using (centreX - 0.5) and (centreY - 0.5) and round cosR and sinR to say only 5 decimal places? sx = centreX + (int)Math.Round((((double)x - centreX) * cosR) + (((double)y - centreY) * sinR)) - offsetX; sy = centreY + (int)Math.Round((((double)y - centreY) * cosR) - (((double)x - centreX) * sinR)) - offsetY; } if (sx >= 0 && sx < baseX && sy >= 0 && sy < baseY) { try { terrain_tmp[x, y] = (float)newTerrain[sx, sy]; } catch (Exception) //just in case we've still not taken care of every way the arrays might go out of bounds! ;) { m_log.DebugFormat("{0} MergeWithBounding - Rotate: Out of Bounds sx={1} sy={2} dx={3} dy={4}", sx, sy, x, y); } } } } // We could also incorporate the next steps, bounding-rectangle and displacement in the loop above, but it's simpler to visualise if done separately // and will also make it much easier when later I want the option for maybe a circular or oval bounding shape too ;). int newX = m_terrainData.SizeX; int newY = m_terrainData.SizeY; // displacement is relative to <0,0> in the destination region and defines where the origin of the data selected by the bounding-rectangle is placed int dispX = (int)Math.Floor(displacement.X); int dispY = (int)Math.Floor(displacement.Y); // startX/Y and endX/Y are coordinates in bitmap_tmp int startX = (int)Math.Floor(boundingOrigin.X) + offsetX; if (startX > tmpX) startX = tmpX; if (startX < 0) startX = 0; int startY = (int)Math.Floor(boundingOrigin.Y) + offsetY; if (startY > tmpY) startY = tmpY; if (startY < 0) startY = 0; int endX = (int)Math.Floor(boundingOrigin.X + boundingSize.X) + offsetX; if (endX > tmpX) endX = tmpX; if (endX < 0) endX = 0; int endY = (int)Math.Floor(boundingOrigin.Y + boundingSize.Y) + offsetY; if (endY > tmpY) endY = tmpY; if (endY < 0) endY = 0; //m_log.DebugFormat("{0} MergeWithBounding: inSize=<{1},{2}>, disp=<{3},{4}> rot={5}, offset=<{6},{7}>, boundingStart=<{8},{9}>, boundingEnd=<{10},{11}>, cosR={12}, sinR={13}, outSize=<{14},{15}>", LogHeader, // baseX, baseY, dispX, dispY, radianRotation, offsetX, offsetY, startX, startY, endX, endY, cosR, sinR, newX, newY); int dx, dy; for (y = startY; y < endY; y++) { for (x = startX; x < endX; x++) { dx = x - startX + dispX; dy = y - startY + dispY; if (dx >= 0 && dx < newX && dy >= 0 && dy < newY) { try { float newHeight = (float)terrain_tmp[x, y]; //use 'alpha' mask if (newHeight != -65535f) m_terrainData[dx, dy] = newHeight + displacement.Z; } catch (Exception) //just in case we've still not taken care of every way the arrays might go out of bounds! ;) { m_log.DebugFormat("{0} MergeWithBounding - Bound & Displace: Out of Bounds sx={1} sy={2} dx={3} dy={4}", x, y, dx, dy); } } } } } #endregion public TerrainChannel Copy() { TerrainChannel copy = new TerrainChannel(); copy.m_terrainData = m_terrainData.Clone(); return copy; } private void WriteXml(XmlWriter writer) { if (Width == Constants.RegionSize && Height == Constants.RegionSize) { // Downward compatibility for legacy region terrain maps. // If region is exactly legacy size, return the old format XML. writer.WriteStartElement(String.Empty, "TerrainMap", String.Empty); ToXml(writer); writer.WriteEndElement(); } else { // New format XML that includes width and length. writer.WriteStartElement(String.Empty, "TerrainMap2", String.Empty); ToXml2(writer); writer.WriteEndElement(); } } private void ReadXml(XmlReader reader) { // Check the first element. If legacy element, use the legacy reader. if (reader.IsStartElement("TerrainMap")) { reader.ReadStartElement("TerrainMap"); FromXml(reader); } else { reader.ReadStartElement("TerrainMap2"); FromXml2(reader); } } // Write legacy terrain map. Presumed to be 256x256 of data encoded as floats in a byte array. private void ToXml(XmlWriter xmlWriter) { float[] mapData = GetFloatsSerialised(); byte[] buffer = new byte[mapData.Length * 4]; for (int i = 0; i < mapData.Length; i++) { byte[] value = BitConverter.GetBytes(mapData[i]); Array.Copy(value, 0, buffer, (i * 4), 4); } XmlSerializer serializer = new XmlSerializer(typeof(byte[])); serializer.Serialize(xmlWriter, buffer); } // Read legacy terrain map. Presumed to be 256x256 of data encoded as floats in a byte array. private void FromXml(XmlReader xmlReader) { XmlSerializer serializer = new XmlSerializer(typeof(byte[])); byte[] dataArray = (byte[])serializer.Deserialize(xmlReader); int index = 0; m_terrainData = new TerrainData(Height, Width, (int)Constants.RegionHeight); for (int y = 0; y < Height; y++) { for (int x = 0; x < Width; x++) { float value; value = BitConverter.ToSingle(dataArray, index); index += 4; this[x, y] = value; } } } private class TerrainChannelXMLPackage { public int Version; public int SizeX; public int SizeY; public int SizeZ; public float CompressionFactor; public float[] Map; public TerrainChannelXMLPackage(int pX, int pY, int pZ, float pCompressionFactor, float[] pMap) { Version = 1; SizeX = pX; SizeY = pY; SizeZ = pZ; CompressionFactor = pCompressionFactor; Map = pMap; } } // New terrain serialization format that includes the width and length. private void ToXml2(XmlWriter xmlWriter) { TerrainChannelXMLPackage package = new TerrainChannelXMLPackage(Width, Height, Altitude, m_terrainData.CompressionFactor, m_terrainData.GetCompressedMap()); XmlSerializer serializer = new XmlSerializer(typeof(TerrainChannelXMLPackage)); serializer.Serialize(xmlWriter, package); } // New terrain serialization format that includes the width and length. private void FromXml2(XmlReader xmlReader) { XmlSerializer serializer = new XmlSerializer(typeof(TerrainChannelXMLPackage)); TerrainChannelXMLPackage package = (TerrainChannelXMLPackage)serializer.Deserialize(xmlReader); m_terrainData = new TerrainData(package.Map, package.CompressionFactor, package.SizeX, package.SizeY, package.SizeZ); } // Fill the heightmap with the center bump terrain private void PinHeadIsland() { float cx = m_terrainData.SizeX * 0.5f; float cy = m_terrainData.SizeY * 0.5f; float h, b; for (int x = 0; x < Width; x++) { for (int y = 0; y < Height; y++) { h = 25 * TerrainUtil.SphericalFactor(x - cx, y - cy, 50); b = 10 * TerrainUtil.SphericalFactor(x - cx, y - cy, 100); if (h < b) h = b; m_terrainData[x, y] = h; } } } private void FlatLand() { m_terrainData.ClearLand(); } } }