123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734 |
- /*
- * Copyright (c) Contributors, http://opensimulator.org/
- * See CONTRIBUTORS.TXT for a full list of copyright holders.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * * Neither the name of the OpenSimulator Project nor the
- * names of its contributors may be used to endorse or promote products
- * derived from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
- * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
- * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
- * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- * The quotations from http://wiki.secondlife.com/wiki/Linden_Vehicle_Tutorial
- * are Copyright (c) 2009 Linden Research, Inc and are used under their license
- * of Creative Commons Attribution-Share Alike 3.0
- * (http://creativecommons.org/licenses/by-sa/3.0/).
- */
- using System;
- using System.Collections.Generic;
- using System.Reflection;
- using System.Runtime.InteropServices;
- using OpenMetaverse;
- using OpenSim.Framework;
- using OpenSim.Region.Physics.Manager;
- namespace OpenSim.Region.Physics.BulletSPlugin
- {
- public sealed class BSDynamics : BSActor
- {
- private static string LogHeader = "[BULLETSIM VEHICLE]";
- // the prim this dynamic controller belongs to
- private BSPrimLinkable ControllingPrim { get; set; }
- private bool m_haveRegisteredForSceneEvents;
- // mass of the vehicle fetched each time we're calles
- private float m_vehicleMass;
- // Vehicle properties
- public Vehicle Type { get; set; }
- // private Quaternion m_referenceFrame = Quaternion.Identity; // Axis modifier
- private VehicleFlag m_flags = (VehicleFlag) 0; // Boolean settings:
- // HOVER_TERRAIN_ONLY
- // HOVER_GLOBAL_HEIGHT
- // NO_DEFLECTION_UP
- // HOVER_WATER_ONLY
- // HOVER_UP_ONLY
- // LIMIT_MOTOR_UP
- // LIMIT_ROLL_ONLY
- private Vector3 m_BlockingEndPoint = Vector3.Zero;
- private Quaternion m_RollreferenceFrame = Quaternion.Identity;
- private Quaternion m_referenceFrame = Quaternion.Identity;
- // Linear properties
- private BSVMotor m_linearMotor = new BSVMotor("LinearMotor");
- private Vector3 m_linearMotorDirection = Vector3.Zero; // velocity requested by LSL, decayed by time
- private Vector3 m_linearMotorOffset = Vector3.Zero; // the point of force can be offset from the center
- private Vector3 m_linearMotorDirectionLASTSET = Vector3.Zero; // velocity requested by LSL
- private Vector3 m_linearFrictionTimescale = Vector3.Zero;
- private float m_linearMotorDecayTimescale = 0;
- private float m_linearMotorTimescale = 0;
- private Vector3 m_lastLinearVelocityVector = Vector3.Zero;
- private Vector3 m_lastPositionVector = Vector3.Zero;
- // private bool m_LinearMotorSetLastFrame = false;
- // private Vector3 m_linearMotorOffset = Vector3.Zero;
- //Angular properties
- private BSVMotor m_angularMotor = new BSVMotor("AngularMotor");
- private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor
- // private int m_angularMotorApply = 0; // application frame counter
- private Vector3 m_angularMotorVelocity = Vector3.Zero; // current angular motor velocity
- private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate
- private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate
- private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate
- private Vector3 m_lastAngularVelocity = Vector3.Zero;
- private Vector3 m_lastVertAttractor = Vector3.Zero; // what VA was last applied to body
- //Deflection properties
- private BSVMotor m_angularDeflectionMotor = new BSVMotor("AngularDeflection");
- private float m_angularDeflectionEfficiency = 0;
- private float m_angularDeflectionTimescale = 0;
- private float m_linearDeflectionEfficiency = 0;
- private float m_linearDeflectionTimescale = 0;
- //Banking properties
- private float m_bankingEfficiency = 0;
- private float m_bankingMix = 0;
- private float m_bankingTimescale = 0;
- //Hover and Buoyancy properties
- private BSVMotor m_hoverMotor = new BSVMotor("Hover");
- private float m_VhoverHeight = 0f;
- private float m_VhoverEfficiency = 0f;
- private float m_VhoverTimescale = 0f;
- private float m_VhoverTargetHeight = -1.0f; // if <0 then no hover, else its the current target height
- // Modifies gravity. Slider between -1 (double-gravity) and 1 (full anti-gravity)
- private float m_VehicleBuoyancy = 0f;
- private Vector3 m_VehicleGravity = Vector3.Zero; // Gravity computed when buoyancy set
- //Attractor properties
- private BSVMotor m_verticalAttractionMotor = new BSVMotor("VerticalAttraction");
- private float m_verticalAttractionEfficiency = 1.0f; // damped
- private float m_verticalAttractionCutoff = 500f; // per the documentation
- // Timescale > cutoff means no vert attractor.
- private float m_verticalAttractionTimescale = 510f;
- // Just some recomputed constants:
- static readonly float PIOverFour = ((float)Math.PI) / 4f;
- static readonly float PIOverTwo = ((float)Math.PI) / 2f;
- public BSDynamics(BSScene myScene, BSPrim myPrim, string actorName)
- : base(myScene, myPrim, actorName)
- {
- Type = Vehicle.TYPE_NONE;
- m_haveRegisteredForSceneEvents = false;
- ControllingPrim = myPrim as BSPrimLinkable;
- if (ControllingPrim == null)
- {
- // THIS CANNOT HAPPEN!!
- }
- VDetailLog("{0},Creation", ControllingPrim.LocalID);
- }
- // Return 'true' if this vehicle is doing vehicle things
- public bool IsActive
- {
- get { return (Type != Vehicle.TYPE_NONE && ControllingPrim.IsPhysicallyActive); }
- }
- // Return 'true' if this a vehicle that should be sitting on the ground
- public bool IsGroundVehicle
- {
- get { return (Type == Vehicle.TYPE_CAR || Type == Vehicle.TYPE_SLED); }
- }
- #region Vehicle parameter setting
- public void ProcessFloatVehicleParam(Vehicle pParam, float pValue)
- {
- VDetailLog("{0},ProcessFloatVehicleParam,param={1},val={2}", ControllingPrim.LocalID, pParam, pValue);
- switch (pParam)
- {
- case Vehicle.ANGULAR_DEFLECTION_EFFICIENCY:
- m_angularDeflectionEfficiency = ClampInRange(0f, pValue, 1f);
- break;
- case Vehicle.ANGULAR_DEFLECTION_TIMESCALE:
- m_angularDeflectionTimescale = Math.Max(pValue, 0.01f);
- break;
- case Vehicle.ANGULAR_MOTOR_DECAY_TIMESCALE:
- m_angularMotorDecayTimescale = ClampInRange(0.01f, pValue, 120);
- m_angularMotor.TargetValueDecayTimeScale = m_angularMotorDecayTimescale;
- break;
- case Vehicle.ANGULAR_MOTOR_TIMESCALE:
- m_angularMotorTimescale = Math.Max(pValue, 0.01f);
- m_angularMotor.TimeScale = m_angularMotorTimescale;
- break;
- case Vehicle.BANKING_EFFICIENCY:
- m_bankingEfficiency = ClampInRange(-1f, pValue, 1f);
- break;
- case Vehicle.BANKING_MIX:
- m_bankingMix = Math.Max(pValue, 0.01f);
- break;
- case Vehicle.BANKING_TIMESCALE:
- m_bankingTimescale = Math.Max(pValue, 0.01f);
- break;
- case Vehicle.BUOYANCY:
- m_VehicleBuoyancy = ClampInRange(-1f, pValue, 1f);
- m_VehicleGravity = ControllingPrim.ComputeGravity(m_VehicleBuoyancy);
- break;
- case Vehicle.HOVER_EFFICIENCY:
- m_VhoverEfficiency = ClampInRange(0f, pValue, 1f);
- break;
- case Vehicle.HOVER_HEIGHT:
- m_VhoverHeight = pValue;
- break;
- case Vehicle.HOVER_TIMESCALE:
- m_VhoverTimescale = Math.Max(pValue, 0.01f);
- break;
- case Vehicle.LINEAR_DEFLECTION_EFFICIENCY:
- m_linearDeflectionEfficiency = ClampInRange(0f, pValue, 1f);
- break;
- case Vehicle.LINEAR_DEFLECTION_TIMESCALE:
- m_linearDeflectionTimescale = Math.Max(pValue, 0.01f);
- break;
- case Vehicle.LINEAR_MOTOR_DECAY_TIMESCALE:
- m_linearMotorDecayTimescale = ClampInRange(0.01f, pValue, 120);
- m_linearMotor.TargetValueDecayTimeScale = m_linearMotorDecayTimescale;
- break;
- case Vehicle.LINEAR_MOTOR_TIMESCALE:
- m_linearMotorTimescale = Math.Max(pValue, 0.01f);
- m_linearMotor.TimeScale = m_linearMotorTimescale;
- break;
- case Vehicle.VERTICAL_ATTRACTION_EFFICIENCY:
- m_verticalAttractionEfficiency = ClampInRange(0.1f, pValue, 1f);
- m_verticalAttractionMotor.Efficiency = m_verticalAttractionEfficiency;
- break;
- case Vehicle.VERTICAL_ATTRACTION_TIMESCALE:
- m_verticalAttractionTimescale = Math.Max(pValue, 0.01f);
- m_verticalAttractionMotor.TimeScale = m_verticalAttractionTimescale;
- break;
- // These are vector properties but the engine lets you use a single float value to
- // set all of the components to the same value
- case Vehicle.ANGULAR_FRICTION_TIMESCALE:
- m_angularFrictionTimescale = new Vector3(pValue, pValue, pValue);
- break;
- case Vehicle.ANGULAR_MOTOR_DIRECTION:
- m_angularMotorDirection = new Vector3(pValue, pValue, pValue);
- m_angularMotor.Zero();
- m_angularMotor.SetTarget(m_angularMotorDirection);
- break;
- case Vehicle.LINEAR_FRICTION_TIMESCALE:
- m_linearFrictionTimescale = new Vector3(pValue, pValue, pValue);
- break;
- case Vehicle.LINEAR_MOTOR_DIRECTION:
- m_linearMotorDirection = new Vector3(pValue, pValue, pValue);
- m_linearMotorDirectionLASTSET = new Vector3(pValue, pValue, pValue);
- m_linearMotor.SetTarget(m_linearMotorDirection);
- break;
- case Vehicle.LINEAR_MOTOR_OFFSET:
- m_linearMotorOffset = new Vector3(pValue, pValue, pValue);
- break;
- }
- }//end ProcessFloatVehicleParam
- internal void ProcessVectorVehicleParam(Vehicle pParam, Vector3 pValue)
- {
- VDetailLog("{0},ProcessVectorVehicleParam,param={1},val={2}", ControllingPrim.LocalID, pParam, pValue);
- switch (pParam)
- {
- case Vehicle.ANGULAR_FRICTION_TIMESCALE:
- m_angularFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
- break;
- case Vehicle.ANGULAR_MOTOR_DIRECTION:
- // Limit requested angular speed to 2 rps= 4 pi rads/sec
- pValue.X = ClampInRange(-12.56f, pValue.X, 12.56f);
- pValue.Y = ClampInRange(-12.56f, pValue.Y, 12.56f);
- pValue.Z = ClampInRange(-12.56f, pValue.Z, 12.56f);
- m_angularMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
- m_angularMotor.Zero();
- m_angularMotor.SetTarget(m_angularMotorDirection);
- break;
- case Vehicle.LINEAR_FRICTION_TIMESCALE:
- m_linearFrictionTimescale = new Vector3(pValue.X, pValue.Y, pValue.Z);
- break;
- case Vehicle.LINEAR_MOTOR_DIRECTION:
- m_linearMotorDirection = new Vector3(pValue.X, pValue.Y, pValue.Z);
- m_linearMotorDirectionLASTSET = new Vector3(pValue.X, pValue.Y, pValue.Z);
- m_linearMotor.SetTarget(m_linearMotorDirection);
- break;
- case Vehicle.LINEAR_MOTOR_OFFSET:
- m_linearMotorOffset = new Vector3(pValue.X, pValue.Y, pValue.Z);
- break;
- case Vehicle.BLOCK_EXIT:
- m_BlockingEndPoint = new Vector3(pValue.X, pValue.Y, pValue.Z);
- break;
- }
- }//end ProcessVectorVehicleParam
- internal void ProcessRotationVehicleParam(Vehicle pParam, Quaternion pValue)
- {
- VDetailLog("{0},ProcessRotationalVehicleParam,param={1},val={2}", ControllingPrim.LocalID, pParam, pValue);
- switch (pParam)
- {
- case Vehicle.REFERENCE_FRAME:
- m_referenceFrame = pValue;
- break;
- case Vehicle.ROLL_FRAME:
- m_RollreferenceFrame = pValue;
- break;
- }
- }//end ProcessRotationVehicleParam
- internal void ProcessVehicleFlags(int pParam, bool remove)
- {
- VDetailLog("{0},ProcessVehicleFlags,param={1},remove={2}", ControllingPrim.LocalID, pParam, remove);
- VehicleFlag parm = (VehicleFlag)pParam;
- if (pParam == -1)
- m_flags = (VehicleFlag)0;
- else
- {
- if (remove)
- m_flags &= ~parm;
- else
- m_flags |= parm;
- }
- }
- public void ProcessTypeChange(Vehicle pType)
- {
- VDetailLog("{0},ProcessTypeChange,type={1}", ControllingPrim.LocalID, pType);
- // Set Defaults For Type
- Type = pType;
- switch (pType)
- {
- case Vehicle.TYPE_NONE:
- m_linearMotorDirection = Vector3.Zero;
- m_linearMotorTimescale = 0;
- m_linearMotorDecayTimescale = 0;
- m_linearFrictionTimescale = new Vector3(0, 0, 0);
- m_angularMotorDirection = Vector3.Zero;
- m_angularMotorDecayTimescale = 0;
- m_angularMotorTimescale = 0;
- m_angularFrictionTimescale = new Vector3(0, 0, 0);
- m_VhoverHeight = 0;
- m_VhoverEfficiency = 0;
- m_VhoverTimescale = 0;
- m_VehicleBuoyancy = 0;
- m_linearDeflectionEfficiency = 1;
- m_linearDeflectionTimescale = 1;
- m_angularDeflectionEfficiency = 0;
- m_angularDeflectionTimescale = 1000;
- m_verticalAttractionEfficiency = 0;
- m_verticalAttractionTimescale = 0;
- m_bankingEfficiency = 0;
- m_bankingTimescale = 1000;
- m_bankingMix = 1;
- m_referenceFrame = Quaternion.Identity;
- m_flags = (VehicleFlag)0;
- break;
- case Vehicle.TYPE_SLED:
- m_linearMotorDirection = Vector3.Zero;
- m_linearMotorTimescale = 1000;
- m_linearMotorDecayTimescale = 120;
- m_linearFrictionTimescale = new Vector3(30, 1, 1000);
- m_angularMotorDirection = Vector3.Zero;
- m_angularMotorTimescale = 1000;
- m_angularMotorDecayTimescale = 120;
- m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
- m_VhoverHeight = 0;
- m_VhoverEfficiency = 10; // TODO: this looks wrong!!
- m_VhoverTimescale = 10;
- m_VehicleBuoyancy = 0;
- m_linearDeflectionEfficiency = 1;
- m_linearDeflectionTimescale = 1;
- m_angularDeflectionEfficiency = 1;
- m_angularDeflectionTimescale = 1000;
- m_verticalAttractionEfficiency = 0;
- m_verticalAttractionTimescale = 0;
- m_bankingEfficiency = 0;
- m_bankingTimescale = 10;
- m_bankingMix = 1;
- m_referenceFrame = Quaternion.Identity;
- m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY
- | VehicleFlag.HOVER_TERRAIN_ONLY
- | VehicleFlag.HOVER_GLOBAL_HEIGHT
- | VehicleFlag.HOVER_UP_ONLY);
- m_flags |= (VehicleFlag.NO_DEFLECTION_UP
- | VehicleFlag.LIMIT_ROLL_ONLY
- | VehicleFlag.LIMIT_MOTOR_UP);
- break;
- case Vehicle.TYPE_CAR:
- m_linearMotorDirection = Vector3.Zero;
- m_linearMotorTimescale = 1;
- m_linearMotorDecayTimescale = 60;
- m_linearFrictionTimescale = new Vector3(100, 2, 1000);
- m_angularMotorDirection = Vector3.Zero;
- m_angularMotorTimescale = 1;
- m_angularMotorDecayTimescale = 0.8f;
- m_angularFrictionTimescale = new Vector3(1000, 1000, 1000);
- m_VhoverHeight = 0;
- m_VhoverEfficiency = 0;
- m_VhoverTimescale = 1000;
- m_VehicleBuoyancy = 0;
- m_linearDeflectionEfficiency = 1;
- m_linearDeflectionTimescale = 2;
- m_angularDeflectionEfficiency = 0;
- m_angularDeflectionTimescale = 10;
- m_verticalAttractionEfficiency = 1f;
- m_verticalAttractionTimescale = 10f;
- m_bankingEfficiency = -0.2f;
- m_bankingMix = 1;
- m_bankingTimescale = 1;
- m_referenceFrame = Quaternion.Identity;
- m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY
- | VehicleFlag.HOVER_TERRAIN_ONLY
- | VehicleFlag.HOVER_GLOBAL_HEIGHT);
- m_flags |= (VehicleFlag.NO_DEFLECTION_UP
- | VehicleFlag.LIMIT_ROLL_ONLY
- | VehicleFlag.LIMIT_MOTOR_UP
- | VehicleFlag.HOVER_UP_ONLY);
- break;
- case Vehicle.TYPE_BOAT:
- m_linearMotorDirection = Vector3.Zero;
- m_linearMotorTimescale = 5;
- m_linearMotorDecayTimescale = 60;
- m_linearFrictionTimescale = new Vector3(10, 3, 2);
- m_angularMotorDirection = Vector3.Zero;
- m_angularMotorTimescale = 4;
- m_angularMotorDecayTimescale = 4;
- m_angularFrictionTimescale = new Vector3(10,10,10);
- m_VhoverHeight = 0;
- m_VhoverEfficiency = 0.5f;
- m_VhoverTimescale = 2;
- m_VehicleBuoyancy = 1;
- m_linearDeflectionEfficiency = 0.5f;
- m_linearDeflectionTimescale = 3;
- m_angularDeflectionEfficiency = 0.5f;
- m_angularDeflectionTimescale = 5;
- m_verticalAttractionEfficiency = 0.5f;
- m_verticalAttractionTimescale = 5f;
- m_bankingEfficiency = -0.3f;
- m_bankingMix = 0.8f;
- m_bankingTimescale = 1;
- m_referenceFrame = Quaternion.Identity;
- m_flags &= ~(VehicleFlag.HOVER_TERRAIN_ONLY
- | VehicleFlag.HOVER_GLOBAL_HEIGHT
- | VehicleFlag.LIMIT_ROLL_ONLY
- | VehicleFlag.HOVER_UP_ONLY);
- m_flags |= (VehicleFlag.NO_DEFLECTION_UP
- | VehicleFlag.LIMIT_MOTOR_UP
- | VehicleFlag.HOVER_WATER_ONLY);
- break;
- case Vehicle.TYPE_AIRPLANE:
- m_linearMotorDirection = Vector3.Zero;
- m_linearMotorTimescale = 2;
- m_linearMotorDecayTimescale = 60;
- m_linearFrictionTimescale = new Vector3(200, 10, 5);
- m_angularMotorDirection = Vector3.Zero;
- m_angularMotorTimescale = 4;
- m_angularMotorDecayTimescale = 4;
- m_angularFrictionTimescale = new Vector3(20, 20, 20);
- m_VhoverHeight = 0;
- m_VhoverEfficiency = 0.5f;
- m_VhoverTimescale = 1000;
- m_VehicleBuoyancy = 0;
- m_linearDeflectionEfficiency = 0.5f;
- m_linearDeflectionTimescale = 3;
- m_angularDeflectionEfficiency = 1;
- m_angularDeflectionTimescale = 2;
- m_verticalAttractionEfficiency = 0.9f;
- m_verticalAttractionTimescale = 2f;
- m_bankingEfficiency = 1;
- m_bankingMix = 0.7f;
- m_bankingTimescale = 2;
- m_referenceFrame = Quaternion.Identity;
- m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY
- | VehicleFlag.HOVER_TERRAIN_ONLY
- | VehicleFlag.HOVER_GLOBAL_HEIGHT
- | VehicleFlag.HOVER_UP_ONLY
- | VehicleFlag.NO_DEFLECTION_UP
- | VehicleFlag.LIMIT_MOTOR_UP);
- m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY);
- break;
- case Vehicle.TYPE_BALLOON:
- m_linearMotorDirection = Vector3.Zero;
- m_linearMotorTimescale = 5;
- m_linearFrictionTimescale = new Vector3(5, 5, 5);
- m_linearMotorDecayTimescale = 60;
- m_angularMotorDirection = Vector3.Zero;
- m_angularMotorTimescale = 6;
- m_angularFrictionTimescale = new Vector3(10, 10, 10);
- m_angularMotorDecayTimescale = 10;
- m_VhoverHeight = 5;
- m_VhoverEfficiency = 0.8f;
- m_VhoverTimescale = 10;
- m_VehicleBuoyancy = 1;
- m_linearDeflectionEfficiency = 0;
- m_linearDeflectionTimescale = 5;
- m_angularDeflectionEfficiency = 0;
- m_angularDeflectionTimescale = 5;
- m_verticalAttractionEfficiency = 1f;
- m_verticalAttractionTimescale = 100f;
- m_bankingEfficiency = 0;
- m_bankingMix = 0.7f;
- m_bankingTimescale = 5;
- m_referenceFrame = Quaternion.Identity;
- m_referenceFrame = Quaternion.Identity;
- m_flags &= ~(VehicleFlag.HOVER_WATER_ONLY
- | VehicleFlag.HOVER_TERRAIN_ONLY
- | VehicleFlag.HOVER_UP_ONLY
- | VehicleFlag.NO_DEFLECTION_UP
- | VehicleFlag.LIMIT_MOTOR_UP);
- m_flags |= (VehicleFlag.LIMIT_ROLL_ONLY
- | VehicleFlag.HOVER_GLOBAL_HEIGHT);
- break;
- }
- m_linearMotor = new BSVMotor("LinearMotor", m_linearMotorTimescale, m_linearMotorDecayTimescale, 1f);
- // m_linearMotor.PhysicsScene = m_physicsScene; // DEBUG DEBUG DEBUG (enables detail logging)
- m_angularMotor = new BSVMotor("AngularMotor", m_angularMotorTimescale, m_angularMotorDecayTimescale, 1f);
- // m_angularMotor.PhysicsScene = m_physicsScene; // DEBUG DEBUG DEBUG (enables detail logging)
- /* Not implemented
- m_verticalAttractionMotor = new BSVMotor("VerticalAttraction", m_verticalAttractionTimescale,
- BSMotor.Infinite, BSMotor.InfiniteVector,
- m_verticalAttractionEfficiency);
- // Z goes away and we keep X and Y
- m_verticalAttractionMotor.PhysicsScene = PhysicsScene; // DEBUG DEBUG DEBUG (enables detail logging)
- */
- if (this.Type == Vehicle.TYPE_NONE)
- {
- UnregisterForSceneEvents();
- }
- else
- {
- RegisterForSceneEvents();
- }
- // Update any physical parameters based on this type.
- Refresh();
- }
- #endregion // Vehicle parameter setting
- // BSActor.Refresh()
- public override void Refresh()
- {
- // If asking for a refresh, reset the physical parameters before the next simulation step.
- // Called whether active or not since the active state may be updated before the next step.
- m_physicsScene.PostTaintObject("BSDynamics.Refresh", ControllingPrim.LocalID, delegate()
- {
- SetPhysicalParameters();
- });
- }
- // Some of the properties of this prim may have changed.
- // Do any updating needed for a vehicle
- private void SetPhysicalParameters()
- {
- if (IsActive)
- {
- // Remember the mass so we don't have to fetch it every step
- m_vehicleMass = ControllingPrim.TotalMass;
- // Friction affects are handled by this vehicle code
- // m_physicsScene.PE.SetFriction(ControllingPrim.PhysBody, BSParam.VehicleFriction);
- // m_physicsScene.PE.SetRestitution(ControllingPrim.PhysBody, BSParam.VehicleRestitution);
- ControllingPrim.Linkset.SetPhysicalFriction(BSParam.VehicleFriction);
- ControllingPrim.Linkset.SetPhysicalRestitution(BSParam.VehicleRestitution);
- // Moderate angular movement introduced by Bullet.
- // TODO: possibly set AngularFactor and LinearFactor for the type of vehicle.
- // Maybe compute linear and angular factor and damping from params.
- m_physicsScene.PE.SetAngularDamping(ControllingPrim.PhysBody, BSParam.VehicleAngularDamping);
- m_physicsScene.PE.SetLinearFactor(ControllingPrim.PhysBody, BSParam.VehicleLinearFactor);
- m_physicsScene.PE.SetAngularFactorV(ControllingPrim.PhysBody, BSParam.VehicleAngularFactor);
- // Vehicles report collision events so we know when it's on the ground
- // m_physicsScene.PE.AddToCollisionFlags(ControllingPrim.PhysBody, CollisionFlags.BS_VEHICLE_COLLISIONS);
- ControllingPrim.Linkset.AddToPhysicalCollisionFlags(CollisionFlags.BS_VEHICLE_COLLISIONS);
- // Vector3 inertia = m_physicsScene.PE.CalculateLocalInertia(ControllingPrim.PhysShape.physShapeInfo, m_vehicleMass);
- // ControllingPrim.Inertia = inertia * BSParam.VehicleInertiaFactor;
- // m_physicsScene.PE.SetMassProps(ControllingPrim.PhysBody, m_vehicleMass, ControllingPrim.Inertia);
- // m_physicsScene.PE.UpdateInertiaTensor(ControllingPrim.PhysBody);
- ControllingPrim.Linkset.ComputeAndSetLocalInertia(BSParam.VehicleInertiaFactor, m_vehicleMass);
- // Set the gravity for the vehicle depending on the buoyancy
- // TODO: what should be done if prim and vehicle buoyancy differ?
- m_VehicleGravity = ControllingPrim.ComputeGravity(m_VehicleBuoyancy);
- // The actual vehicle gravity is set to zero in Bullet so we can do all the application of same.
- // m_physicsScene.PE.SetGravity(ControllingPrim.PhysBody, Vector3.Zero);
- ControllingPrim.Linkset.SetPhysicalGravity(Vector3.Zero);
- VDetailLog("{0},BSDynamics.SetPhysicalParameters,mass={1},inert={2},vehGrav={3},aDamp={4},frict={5},rest={6},lFact={7},aFact={8}",
- ControllingPrim.LocalID, m_vehicleMass, ControllingPrim.Inertia, m_VehicleGravity,
- BSParam.VehicleAngularDamping, BSParam.VehicleFriction, BSParam.VehicleRestitution,
- BSParam.VehicleLinearFactor, BSParam.VehicleAngularFactor
- );
- }
- else
- {
- if (ControllingPrim.PhysBody.HasPhysicalBody)
- m_physicsScene.PE.RemoveFromCollisionFlags(ControllingPrim.PhysBody, CollisionFlags.BS_VEHICLE_COLLISIONS);
- // ControllingPrim.Linkset.RemoveFromPhysicalCollisionFlags(CollisionFlags.BS_VEHICLE_COLLISIONS);
- }
- }
- // BSActor.RemoveBodyDependencies
- public override void RemoveDependencies()
- {
- Refresh();
- }
- // BSActor.Release()
- public override void Dispose()
- {
- VDetailLog("{0},Dispose", ControllingPrim.LocalID);
- UnregisterForSceneEvents();
- Type = Vehicle.TYPE_NONE;
- Enabled = false;
- return;
- }
- private void RegisterForSceneEvents()
- {
- if (!m_haveRegisteredForSceneEvents)
- {
- m_physicsScene.BeforeStep += this.Step;
- m_physicsScene.AfterStep += this.PostStep;
- ControllingPrim.OnPreUpdateProperty += this.PreUpdateProperty;
- m_haveRegisteredForSceneEvents = true;
- }
- }
- private void UnregisterForSceneEvents()
- {
- if (m_haveRegisteredForSceneEvents)
- {
- m_physicsScene.BeforeStep -= this.Step;
- m_physicsScene.AfterStep -= this.PostStep;
- ControllingPrim.OnPreUpdateProperty -= this.PreUpdateProperty;
- m_haveRegisteredForSceneEvents = false;
- }
- }
- private void PreUpdateProperty(ref EntityProperties entprop)
- {
- // A temporary kludge to suppress the rotational effects introduced on vehicles by Bullet
- // TODO: handle physics introduced by Bullet with computed vehicle physics.
- if (IsActive)
- {
- entprop.RotationalVelocity = Vector3.Zero;
- }
- }
- #region Known vehicle value functions
- // Vehicle physical parameters that we buffer from constant getting and setting.
- // The "m_known*" values are unknown until they are fetched and the m_knownHas flag is set.
- // Changing is remembered and the parameter is stored back into the physics engine only if updated.
- // This does two things: 1) saves continuious calls into unmanaged code, and
- // 2) signals when a physics property update must happen back to the simulator
- // to update values modified for the vehicle.
- private int m_knownChanged;
- private int m_knownHas;
- private float m_knownTerrainHeight;
- private float m_knownWaterLevel;
- private Vector3 m_knownPosition;
- private Vector3 m_knownVelocity;
- private Vector3 m_knownForce;
- private Vector3 m_knownForceImpulse;
- private Quaternion m_knownOrientation;
- private Vector3 m_knownRotationalVelocity;
- private Vector3 m_knownRotationalForce;
- private Vector3 m_knownRotationalImpulse;
- private const int m_knownChangedPosition = 1 << 0;
- private const int m_knownChangedVelocity = 1 << 1;
- private const int m_knownChangedForce = 1 << 2;
- private const int m_knownChangedForceImpulse = 1 << 3;
- private const int m_knownChangedOrientation = 1 << 4;
- private const int m_knownChangedRotationalVelocity = 1 << 5;
- private const int m_knownChangedRotationalForce = 1 << 6;
- private const int m_knownChangedRotationalImpulse = 1 << 7;
- private const int m_knownChangedTerrainHeight = 1 << 8;
- private const int m_knownChangedWaterLevel = 1 << 9;
- public void ForgetKnownVehicleProperties()
- {
- m_knownHas = 0;
- m_knownChanged = 0;
- }
- // Push all the changed values back into the physics engine
- public void PushKnownChanged()
- {
- if (m_knownChanged != 0)
- {
- if ((m_knownChanged & m_knownChangedPosition) != 0)
- ControllingPrim.ForcePosition = m_knownPosition;
- if ((m_knownChanged & m_knownChangedOrientation) != 0)
- ControllingPrim.ForceOrientation = m_knownOrientation;
- if ((m_knownChanged & m_knownChangedVelocity) != 0)
- {
- ControllingPrim.ForceVelocity = m_knownVelocity;
- // Fake out Bullet by making it think the velocity is the same as last time.
- // Bullet does a bunch of smoothing for changing parameters.
- // Since the vehicle is demanding this setting, we override Bullet's smoothing
- // by telling Bullet the value was the same last time.
- // PhysicsScene.PE.SetInterpolationLinearVelocity(Prim.PhysBody, m_knownVelocity);
- }
- if ((m_knownChanged & m_knownChangedForce) != 0)
- ControllingPrim.AddForce((Vector3)m_knownForce, false /*pushForce*/, true /*inTaintTime*/);
- if ((m_knownChanged & m_knownChangedForceImpulse) != 0)
- ControllingPrim.AddForceImpulse((Vector3)m_knownForceImpulse, false /*pushforce*/, true /*inTaintTime*/);
- if ((m_knownChanged & m_knownChangedRotationalVelocity) != 0)
- {
- ControllingPrim.ForceRotationalVelocity = m_knownRotationalVelocity;
- // PhysicsScene.PE.SetInterpolationAngularVelocity(Prim.PhysBody, m_knownRotationalVelocity);
- }
- if ((m_knownChanged & m_knownChangedRotationalImpulse) != 0)
- ControllingPrim.ApplyTorqueImpulse((Vector3)m_knownRotationalImpulse, true /*inTaintTime*/);
- if ((m_knownChanged & m_knownChangedRotationalForce) != 0)
- {
- ControllingPrim.AddAngularForce((Vector3)m_knownRotationalForce, false /*pushForce*/, true /*inTaintTime*/);
- }
- // If we set one of the values (ie, the physics engine didn't do it) we must force
- // an UpdateProperties event to send the changes up to the simulator.
- m_physicsScene.PE.PushUpdate(ControllingPrim.PhysBody);
- }
- m_knownChanged = 0;
- }
- // Since the computation of terrain height can be a little involved, this routine
- // is used to fetch the height only once for each vehicle simulation step.
- Vector3 lastRememberedHeightPos = new Vector3(-1, -1, -1);
- private float GetTerrainHeight(Vector3 pos)
- {
- if ((m_knownHas & m_knownChangedTerrainHeight) == 0 || pos != lastRememberedHeightPos)
- {
- lastRememberedHeightPos = pos;
- m_knownTerrainHeight = ControllingPrim.PhysScene.TerrainManager.GetTerrainHeightAtXYZ(pos);
- m_knownHas |= m_knownChangedTerrainHeight;
- }
- return m_knownTerrainHeight;
- }
- // Since the computation of water level can be a little involved, this routine
- // is used ot fetch the level only once for each vehicle simulation step.
- Vector3 lastRememberedWaterHeightPos = new Vector3(-1, -1, -1);
- private float GetWaterLevel(Vector3 pos)
- {
- if ((m_knownHas & m_knownChangedWaterLevel) == 0 || pos != lastRememberedWaterHeightPos)
- {
- lastRememberedWaterHeightPos = pos;
- m_knownWaterLevel = ControllingPrim.PhysScene.TerrainManager.GetWaterLevelAtXYZ(pos);
- m_knownHas |= m_knownChangedWaterLevel;
- }
- return m_knownWaterLevel;
- }
- private Vector3 VehiclePosition
- {
- get
- {
- if ((m_knownHas & m_knownChangedPosition) == 0)
- {
- m_knownPosition = ControllingPrim.ForcePosition;
- m_knownHas |= m_knownChangedPosition;
- }
- return m_knownPosition;
- }
- set
- {
- m_knownPosition = value;
- m_knownChanged |= m_knownChangedPosition;
- m_knownHas |= m_knownChangedPosition;
- }
- }
- private Quaternion VehicleOrientation
- {
- get
- {
- if ((m_knownHas & m_knownChangedOrientation) == 0)
- {
- m_knownOrientation = ControllingPrim.ForceOrientation;
- m_knownHas |= m_knownChangedOrientation;
- }
- return m_knownOrientation;
- }
- set
- {
- m_knownOrientation = value;
- m_knownChanged |= m_knownChangedOrientation;
- m_knownHas |= m_knownChangedOrientation;
- }
- }
- private Vector3 VehicleVelocity
- {
- get
- {
- if ((m_knownHas & m_knownChangedVelocity) == 0)
- {
- m_knownVelocity = ControllingPrim.ForceVelocity;
- m_knownHas |= m_knownChangedVelocity;
- }
- return m_knownVelocity;
- }
- set
- {
- m_knownVelocity = value;
- m_knownChanged |= m_knownChangedVelocity;
- m_knownHas |= m_knownChangedVelocity;
- }
- }
- private void VehicleAddForce(Vector3 pForce)
- {
- if ((m_knownHas & m_knownChangedForce) == 0)
- {
- m_knownForce = Vector3.Zero;
- m_knownHas |= m_knownChangedForce;
- }
- m_knownForce += pForce;
- m_knownChanged |= m_knownChangedForce;
- }
- private void VehicleAddForceImpulse(Vector3 pImpulse)
- {
- if ((m_knownHas & m_knownChangedForceImpulse) == 0)
- {
- m_knownForceImpulse = Vector3.Zero;
- m_knownHas |= m_knownChangedForceImpulse;
- }
- m_knownForceImpulse += pImpulse;
- m_knownChanged |= m_knownChangedForceImpulse;
- }
- private Vector3 VehicleRotationalVelocity
- {
- get
- {
- if ((m_knownHas & m_knownChangedRotationalVelocity) == 0)
- {
- m_knownRotationalVelocity = ControllingPrim.ForceRotationalVelocity;
- m_knownHas |= m_knownChangedRotationalVelocity;
- }
- return (Vector3)m_knownRotationalVelocity;
- }
- set
- {
- m_knownRotationalVelocity = value;
- m_knownChanged |= m_knownChangedRotationalVelocity;
- m_knownHas |= m_knownChangedRotationalVelocity;
- }
- }
- private void VehicleAddAngularForce(Vector3 aForce)
- {
- if ((m_knownHas & m_knownChangedRotationalForce) == 0)
- {
- m_knownRotationalForce = Vector3.Zero;
- }
- m_knownRotationalForce += aForce;
- m_knownChanged |= m_knownChangedRotationalForce;
- m_knownHas |= m_knownChangedRotationalForce;
- }
- private void VehicleAddRotationalImpulse(Vector3 pImpulse)
- {
- if ((m_knownHas & m_knownChangedRotationalImpulse) == 0)
- {
- m_knownRotationalImpulse = Vector3.Zero;
- m_knownHas |= m_knownChangedRotationalImpulse;
- }
- m_knownRotationalImpulse += pImpulse;
- m_knownChanged |= m_knownChangedRotationalImpulse;
- }
- // Vehicle relative forward velocity
- private Vector3 VehicleForwardVelocity
- {
- get
- {
- return VehicleVelocity * Quaternion.Inverse(Quaternion.Normalize(VehicleOrientation));
- }
- }
- private float VehicleForwardSpeed
- {
- get
- {
- return VehicleForwardVelocity.X;
- }
- }
- #endregion // Known vehicle value functions
- // One step of the vehicle properties for the next 'pTimestep' seconds.
- internal void Step(float pTimestep)
- {
- if (!IsActive) return;
- ForgetKnownVehicleProperties();
- MoveLinear(pTimestep);
- MoveAngular(pTimestep);
- LimitRotation(pTimestep);
- // remember the position so next step we can limit absolute movement effects
- m_lastPositionVector = VehiclePosition;
- // If we forced the changing of some vehicle parameters, update the values and
- // for the physics engine to note the changes so an UpdateProperties event will happen.
- PushKnownChanged();
- if (m_physicsScene.VehiclePhysicalLoggingEnabled)
- m_physicsScene.PE.DumpRigidBody(m_physicsScene.World, ControllingPrim.PhysBody);
- VDetailLog("{0},BSDynamics.Step,done,pos={1}, force={2},velocity={3},angvel={4}",
- ControllingPrim.LocalID, VehiclePosition, m_knownForce, VehicleVelocity, VehicleRotationalVelocity);
- }
- // Called after the simulation step
- internal void PostStep(float pTimestep)
- {
- if (!IsActive) return;
- if (m_physicsScene.VehiclePhysicalLoggingEnabled)
- m_physicsScene.PE.DumpRigidBody(m_physicsScene.World, ControllingPrim.PhysBody);
- }
- // Apply the effect of the linear motor and other linear motions (like hover and float).
- private void MoveLinear(float pTimestep)
- {
- ComputeLinearVelocity(pTimestep);
- ComputeLinearDeflection(pTimestep);
- ComputeLinearTerrainHeightCorrection(pTimestep);
- ComputeLinearHover(pTimestep);
- ComputeLinearBlockingEndPoint(pTimestep);
- ComputeLinearMotorUp(pTimestep);
- ApplyGravity(pTimestep);
- // If not changing some axis, reduce out velocity
- if ((m_flags & (VehicleFlag.NO_X | VehicleFlag.NO_Y | VehicleFlag.NO_Z)) != 0)
- {
- Vector3 vel = VehicleVelocity;
- if ((m_flags & (VehicleFlag.NO_X)) != 0)
- {
- vel.X = 0;
- }
- if ((m_flags & (VehicleFlag.NO_Y)) != 0)
- {
- vel.Y = 0;
- }
- if ((m_flags & (VehicleFlag.NO_Z)) != 0)
- {
- vel.Z = 0;
- }
- VehicleVelocity = vel;
- }
- // ==================================================================
- // Clamp high or low velocities
- float newVelocityLengthSq = VehicleVelocity.LengthSquared();
- if (newVelocityLengthSq > BSParam.VehicleMaxLinearVelocitySquared)
- {
- Vector3 origVelW = VehicleVelocity; // DEBUG DEBUG
- VehicleVelocity /= VehicleVelocity.Length();
- VehicleVelocity *= BSParam.VehicleMaxLinearVelocity;
- VDetailLog("{0}, MoveLinear,clampMax,origVelW={1},lenSq={2},maxVelSq={3},,newVelW={4}",
- ControllingPrim.LocalID, origVelW, newVelocityLengthSq, BSParam.VehicleMaxLinearVelocitySquared, VehicleVelocity);
- }
- else if (newVelocityLengthSq < 0.001f)
- VehicleVelocity = Vector3.Zero;
- VDetailLog("{0}, MoveLinear,done,isColl={1},newVel={2}", ControllingPrim.LocalID, ControllingPrim.HasSomeCollision, VehicleVelocity );
- } // end MoveLinear()
- public void ComputeLinearVelocity(float pTimestep)
- {
- // Step the motor from the current value. Get the correction needed this step.
- Vector3 origVelW = VehicleVelocity; // DEBUG
- Vector3 currentVelV = VehicleForwardVelocity;
- Vector3 linearMotorCorrectionV = m_linearMotor.Step(pTimestep, currentVelV);
- // Friction reduces vehicle motion based on absolute speed. Slow vehicle down by friction.
- Vector3 frictionFactorV = ComputeFrictionFactor(m_linearFrictionTimescale, pTimestep);
- linearMotorCorrectionV -= (currentVelV * frictionFactorV);
- // Motor is vehicle coordinates. Rotate it to world coordinates
- Vector3 linearMotorVelocityW = linearMotorCorrectionV * VehicleOrientation;
- // If we're a ground vehicle, don't add any upward Z movement
- if ((m_flags & VehicleFlag.LIMIT_MOTOR_UP) != 0)
- {
- if (linearMotorVelocityW.Z > 0f)
- linearMotorVelocityW.Z = 0f;
- }
- // Add this correction to the velocity to make it faster/slower.
- VehicleVelocity += linearMotorVelocityW;
- VDetailLog("{0}, MoveLinear,velocity,origVelW={1},velV={2},tgt={3},correctV={4},correctW={5},newVelW={6},fricFact={7}",
- ControllingPrim.LocalID, origVelW, currentVelV, m_linearMotor.TargetValue, linearMotorCorrectionV,
- linearMotorVelocityW, VehicleVelocity, frictionFactorV);
- }
- //Given a Deflection Effiency and a Velocity, Returns a Velocity that is Partially Deflected onto the X Axis
- //Clamped so that a DeflectionTimescale of less then 1 does not increase force over original velocity
- private void ComputeLinearDeflection(float pTimestep)
- {
- Vector3 linearDeflectionV = Vector3.Zero;
- Vector3 velocityV = VehicleForwardVelocity;
- if (BSParam.VehicleEnableLinearDeflection)
- {
- // Velocity in Y and Z dimensions is movement to the side or turning.
- // Compute deflection factor from the to the side and rotational velocity
- linearDeflectionV.Y = SortedClampInRange(0, (velocityV.Y * m_linearDeflectionEfficiency) / m_linearDeflectionTimescale, velocityV.Y);
- linearDeflectionV.Z = SortedClampInRange(0, (velocityV.Z * m_linearDeflectionEfficiency) / m_linearDeflectionTimescale, velocityV.Z);
- // Velocity to the side and around is corrected and moved into the forward direction
- linearDeflectionV.X += Math.Abs(linearDeflectionV.Y);
- linearDeflectionV.X += Math.Abs(linearDeflectionV.Z);
- // Scale the deflection to the fractional simulation time
- linearDeflectionV *= pTimestep;
- // Subtract the sideways and rotational velocity deflection factors while adding the correction forward
- linearDeflectionV *= new Vector3(1, -1, -1);
- // Correction is vehicle relative. Convert to world coordinates.
- Vector3 linearDeflectionW = linearDeflectionV * VehicleOrientation;
- // Optionally, if not colliding, don't effect world downward velocity. Let falling things fall.
- if (BSParam.VehicleLinearDeflectionNotCollidingNoZ && !m_controllingPrim.HasSomeCollision)
- {
- linearDeflectionW.Z = 0f;
- }
- VehicleVelocity += linearDeflectionW;
- VDetailLog("{0}, MoveLinear,LinearDeflection,linDefEff={1},linDefTS={2},linDeflectionV={3}",
- ControllingPrim.LocalID, m_linearDeflectionEfficiency, m_linearDeflectionTimescale, linearDeflectionV);
- }
- }
- public void ComputeLinearTerrainHeightCorrection(float pTimestep)
- {
- // If below the terrain, move us above the ground a little.
- // TODO: Consider taking the rotated size of the object or possibly casting a ray.
- if (VehiclePosition.Z < GetTerrainHeight(VehiclePosition))
- {
- // Force position because applying force won't get the vehicle through the terrain
- Vector3 newPosition = VehiclePosition;
- newPosition.Z = GetTerrainHeight(VehiclePosition) + 1f;
- VehiclePosition = newPosition;
- VDetailLog("{0}, MoveLinear,terrainHeight,terrainHeight={1},pos={2}",
- ControllingPrim.LocalID, GetTerrainHeight(VehiclePosition), VehiclePosition);
- }
- }
- public void ComputeLinearHover(float pTimestep)
- {
- // m_VhoverEfficiency: 0=bouncy, 1=totally damped
- // m_VhoverTimescale: time to achieve height
- if ((m_flags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0)
- {
- // We should hover, get the target height
- if ((m_flags & VehicleFlag.HOVER_WATER_ONLY) != 0)
- {
- m_VhoverTargetHeight = GetWaterLevel(VehiclePosition) + m_VhoverHeight;
- }
- if ((m_flags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0)
- {
- m_VhoverTargetHeight = GetTerrainHeight(VehiclePosition) + m_VhoverHeight;
- }
- if ((m_flags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != 0)
- {
- m_VhoverTargetHeight = m_VhoverHeight;
- }
- if ((m_flags & VehicleFlag.HOVER_UP_ONLY) != 0)
- {
- // If body is already heigher, use its height as target height
- if (VehiclePosition.Z > m_VhoverTargetHeight)
- m_VhoverTargetHeight = VehiclePosition.Z;
- }
- if ((m_flags & VehicleFlag.LOCK_HOVER_HEIGHT) != 0)
- {
- if (Math.Abs(VehiclePosition.Z - m_VhoverTargetHeight) > 0.2f)
- {
- Vector3 pos = VehiclePosition;
- pos.Z = m_VhoverTargetHeight;
- VehiclePosition = pos;
- VDetailLog("{0}, MoveLinear,hover,pos={1},lockHoverHeight", ControllingPrim.LocalID, pos);
- }
- }
- else
- {
- // Error is positive if below the target and negative if above.
- Vector3 hpos = VehiclePosition;
- float verticalError = m_VhoverTargetHeight - hpos.Z;
- float verticalCorrection = verticalError / m_VhoverTimescale;
- verticalCorrection *= m_VhoverEfficiency;
- hpos.Z += verticalCorrection;
- VehiclePosition = hpos;
- // Since we are hovering, we need to do the opposite of falling -- get rid of world Z
- Vector3 vel = VehicleVelocity;
- vel.Z = 0f;
- VehicleVelocity = vel;
- /*
- float verticalCorrectionVelocity = verticalError / m_VhoverTimescale;
- Vector3 verticalCorrection = new Vector3(0f, 0f, verticalCorrectionVelocity);
- verticalCorrection *= m_vehicleMass;
- // TODO: implement m_VhoverEfficiency correctly
- VehicleAddForceImpulse(verticalCorrection);
- */
- VDetailLog("{0}, MoveLinear,hover,pos={1},eff={2},hoverTS={3},height={4},target={5},err={6},corr={7}",
- ControllingPrim.LocalID, VehiclePosition, m_VhoverEfficiency,
- m_VhoverTimescale, m_VhoverHeight, m_VhoverTargetHeight,
- verticalError, verticalCorrection);
- }
- }
- }
- public bool ComputeLinearBlockingEndPoint(float pTimestep)
- {
- bool changed = false;
- Vector3 pos = VehiclePosition;
- Vector3 posChange = pos - m_lastPositionVector;
- if (m_BlockingEndPoint != Vector3.Zero)
- {
- if (pos.X >= (m_BlockingEndPoint.X - (float)1))
- {
- pos.X -= posChange.X + 1;
- changed = true;
- }
- if (pos.Y >= (m_BlockingEndPoint.Y - (float)1))
- {
- pos.Y -= posChange.Y + 1;
- changed = true;
- }
- if (pos.Z >= (m_BlockingEndPoint.Z - (float)1))
- {
- pos.Z -= posChange.Z + 1;
- changed = true;
- }
- if (pos.X <= 0)
- {
- pos.X += posChange.X + 1;
- changed = true;
- }
- if (pos.Y <= 0)
- {
- pos.Y += posChange.Y + 1;
- changed = true;
- }
- if (changed)
- {
- VehiclePosition = pos;
- VDetailLog("{0}, MoveLinear,blockingEndPoint,block={1},origPos={2},pos={3}",
- ControllingPrim.LocalID, m_BlockingEndPoint, posChange, pos);
- }
- }
- return changed;
- }
- // From http://wiki.secondlife.com/wiki/LlSetVehicleFlags :
- // Prevent ground vehicles from motoring into the sky. This flag has a subtle effect when
- // used with conjunction with banking: the strength of the banking will decay when the
- // vehicle no longer experiences collisions. The decay timescale is the same as
- // VEHICLE_BANKING_TIMESCALE. This is to help prevent ground vehicles from steering
- // when they are in mid jump.
- // TODO: this code is wrong. Also, what should it do for boats (height from water)?
- // This is just using the ground and a general collision check. Should really be using
- // a downward raycast to find what is below.
- public void ComputeLinearMotorUp(float pTimestep)
- {
- if ((m_flags & (VehicleFlag.LIMIT_MOTOR_UP)) != 0)
- {
- // This code tries to decide if the object is not on the ground and then pushing down
- /*
- float targetHeight = Type == Vehicle.TYPE_BOAT ? GetWaterLevel(VehiclePosition) : GetTerrainHeight(VehiclePosition);
- distanceAboveGround = VehiclePosition.Z - targetHeight;
- // Not colliding if the vehicle is off the ground
- if (!Prim.HasSomeCollision)
- {
- // downForce = new Vector3(0, 0, -distanceAboveGround / m_bankingTimescale);
- VehicleVelocity += new Vector3(0, 0, -distanceAboveGround);
- }
- // TODO: this calculation is wrong. From the description at
- // (http://wiki.secondlife.com/wiki/Category:LSL_Vehicle), the downForce
- // has a decay factor. This says this force should
- // be computed with a motor.
- // TODO: add interaction with banking.
- VDetailLog("{0}, MoveLinear,limitMotorUp,distAbove={1},colliding={2},ret={3}",
- Prim.LocalID, distanceAboveGround, Prim.HasSomeCollision, ret);
- */
- // Another approach is to measure if we're going up. If going up and not colliding,
- // the vehicle is in the air. Fix that by pushing down.
- if (!ControllingPrim.HasSomeCollision && VehicleVelocity.Z > 0.1)
- {
- // Get rid of any of the velocity vector that is pushing us up.
- float upVelocity = VehicleVelocity.Z;
- VehicleVelocity += new Vector3(0, 0, -upVelocity);
- /*
- // If we're pointed up into the air, we should nose down
- Vector3 pointingDirection = Vector3.UnitX * VehicleOrientation;
- // The rotation around the Y axis is pitch up or down
- if (pointingDirection.Y > 0.01f)
- {
- float angularCorrectionForce = -(float)Math.Asin(pointingDirection.Y);
- Vector3 angularCorrectionVector = new Vector3(0f, angularCorrectionForce, 0f);
- // Rotate into world coordinates and apply to vehicle
- angularCorrectionVector *= VehicleOrientation;
- VehicleAddAngularForce(angularCorrectionVector);
- VDetailLog("{0}, MoveLinear,limitMotorUp,newVel={1},pntDir={2},corrFrc={3},aCorr={4}",
- Prim.LocalID, VehicleVelocity, pointingDirection, angularCorrectionForce, angularCorrectionVector);
- }
- */
- VDetailLog("{0}, MoveLinear,limitMotorUp,collide={1},upVel={2},newVel={3}",
- ControllingPrim.LocalID, ControllingPrim.HasSomeCollision, upVelocity, VehicleVelocity);
- }
- }
- }
- private void ApplyGravity(float pTimeStep)
- {
- Vector3 appliedGravity = m_VehicleGravity * m_vehicleMass;
- // Hack to reduce downward force if the vehicle is probably sitting on the ground
- if (ControllingPrim.HasSomeCollision && IsGroundVehicle)
- appliedGravity *= BSParam.VehicleGroundGravityFudge;
- VehicleAddForce(appliedGravity);
- VDetailLog("{0}, MoveLinear,applyGravity,vehGrav={1},collid={2},fudge={3},mass={4},appliedForce={5}",
- ControllingPrim.LocalID, m_VehicleGravity,
- ControllingPrim.HasSomeCollision, BSParam.VehicleGroundGravityFudge, m_vehicleMass, appliedGravity);
- }
- // =======================================================================
- // =======================================================================
- // Apply the effect of the angular motor.
- // The 'contribution' is how much angular correction velocity each function wants.
- // All the contributions are added together and the resulting velocity is
- // set directly on the vehicle.
- private void MoveAngular(float pTimestep)
- {
- ComputeAngularTurning(pTimestep);
- ComputeAngularVerticalAttraction();
- ComputeAngularDeflection();
- ComputeAngularBanking();
- // ==================================================================
- if (VehicleRotationalVelocity.ApproxEquals(Vector3.Zero, 0.0001f))
- {
- // The vehicle is not adding anything angular wise.
- VehicleRotationalVelocity = Vector3.Zero;
- VDetailLog("{0}, MoveAngular,done,zero", ControllingPrim.LocalID);
- }
- else
- {
- VDetailLog("{0}, MoveAngular,done,nonZero,angVel={1}", ControllingPrim.LocalID, VehicleRotationalVelocity);
- }
- // ==================================================================
- //Offset section
- if (m_linearMotorOffset != Vector3.Zero)
- {
- //Offset of linear velocity doesn't change the linear velocity,
- // but causes a torque to be applied, for example...
- //
- // IIIII >>> IIIII
- // IIIII >>> IIIII
- // IIIII >>> IIIII
- // ^
- // | Applying a force at the arrow will cause the object to move forward, but also rotate
- //
- //
- // The torque created is the linear velocity crossed with the offset
- // TODO: this computation should be in the linear section
- // because that is where we know the impulse being applied.
- Vector3 torqueFromOffset = Vector3.Zero;
- // torqueFromOffset = Vector3.Cross(m_linearMotorOffset, appliedImpulse);
- if (float.IsNaN(torqueFromOffset.X))
- torqueFromOffset.X = 0;
- if (float.IsNaN(torqueFromOffset.Y))
- torqueFromOffset.Y = 0;
- if (float.IsNaN(torqueFromOffset.Z))
- torqueFromOffset.Z = 0;
- VehicleAddAngularForce(torqueFromOffset * m_vehicleMass);
- VDetailLog("{0}, BSDynamic.MoveAngular,motorOffset,applyTorqueImpulse={1}", ControllingPrim.LocalID, torqueFromOffset);
- }
- }
- private void ComputeAngularTurning(float pTimestep)
- {
- // The user wants this many radians per second angular change?
- Vector3 origVehicleRotationalVelocity = VehicleRotationalVelocity; // DEBUG DEBUG
- Vector3 currentAngularV = VehicleRotationalVelocity * Quaternion.Inverse(VehicleOrientation);
- Vector3 angularMotorContributionV = m_angularMotor.Step(pTimestep, currentAngularV);
- // ==================================================================
- // From http://wiki.secondlife.com/wiki/LlSetVehicleFlags :
- // This flag prevents linear deflection parallel to world z-axis. This is useful
- // for preventing ground vehicles with large linear deflection, like bumper cars,
- // from climbing their linear deflection into the sky.
- // That is, NO_DEFLECTION_UP says angular motion should not add any pitch or roll movement
- // TODO: This is here because this is where ODE put it but documentation says it
- // is a linear effect. Where should this check go?
- //if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0)
- // {
- // angularMotorContributionV.X = 0f;
- // angularMotorContributionV.Y = 0f;
- // }
- // Reduce any velocity by friction.
- Vector3 frictionFactorW = ComputeFrictionFactor(m_angularFrictionTimescale, pTimestep);
- angularMotorContributionV -= (currentAngularV * frictionFactorW);
- Vector3 angularMotorContributionW = angularMotorContributionV * VehicleOrientation;
- VehicleRotationalVelocity += angularMotorContributionW;
- VDetailLog("{0}, MoveAngular,angularTurning,curAngVelV={1},origVehRotVel={2},vehRotVel={3},frictFact={4}, angContribV={5},angContribW={6}",
- ControllingPrim.LocalID, currentAngularV, origVehicleRotationalVelocity, VehicleRotationalVelocity, frictionFactorW, angularMotorContributionV, angularMotorContributionW);
- }
- // From http://wiki.secondlife.com/wiki/Linden_Vehicle_Tutorial:
- // Some vehicles, like boats, should always keep their up-side up. This can be done by
- // enabling the "vertical attractor" behavior that springs the vehicle's local z-axis to
- // the world z-axis (a.k.a. "up"). To take advantage of this feature you would set the
- // VEHICLE_VERTICAL_ATTRACTION_TIMESCALE to control the period of the spring frequency,
- // and then set the VEHICLE_VERTICAL_ATTRACTION_EFFICIENCY to control the damping. An
- // efficiency of 0.0 will cause the spring to wobble around its equilibrium, while an
- // efficiency of 1.0 will cause the spring to reach its equilibrium with exponential decay.
- public void ComputeAngularVerticalAttraction()
- {
- // If vertical attaction timescale is reasonable
- if (BSParam.VehicleEnableAngularVerticalAttraction && m_verticalAttractionTimescale < m_verticalAttractionCutoff)
- {
- Vector3 vehicleUpAxis = Vector3.UnitZ * VehicleOrientation;
- switch (BSParam.VehicleAngularVerticalAttractionAlgorithm)
- {
- case 0:
- {
- //Another formula to try got from :
- //http://answers.unity3d.com/questions/10425/how-to-stabilize-angular-motion-alignment-of-hover.html
- // Flipping what was originally a timescale into a speed variable and then multiplying it by 2
- // since only computing half the distance between the angles.
- float verticalAttractionSpeed = (1 / m_verticalAttractionTimescale) * 2.0f;
- // Make a prediction of where the up axis will be when this is applied rather then where it is now as
- // this makes for a smoother adjustment and less fighting between the various forces.
- Vector3 predictedUp = vehicleUpAxis * Quaternion.CreateFromAxisAngle(VehicleRotationalVelocity, 0f);
- // This is only half the distance to the target so it will take 2 seconds to complete the turn.
- Vector3 torqueVector = Vector3.Cross(predictedUp, Vector3.UnitZ);
- // Scale vector by our timescale since it is an acceleration it is r/s^2 or radians a timescale squared
- Vector3 vertContributionV = torqueVector * verticalAttractionSpeed * verticalAttractionSpeed;
- VehicleRotationalVelocity += vertContributionV;
- VDetailLog("{0}, MoveAngular,verticalAttraction,vertAttrSpeed={1},upAxis={2},PredictedUp={3},torqueVector={4},contrib={5}",
- ControllingPrim.LocalID,
- verticalAttractionSpeed,
- vehicleUpAxis,
- predictedUp,
- torqueVector,
- vertContributionV);
- break;
- }
- case 1:
- {
- // Possible solution derived from a discussion at:
- // http://stackoverflow.com/questions/14939657/computing-vector-from-quaternion-works-computing-quaternion-from-vector-does-no
- // Create a rotation that is only the vehicle's rotation around Z
- Vector3 currentEulerW = Vector3.Zero;
- VehicleOrientation.GetEulerAngles(out currentEulerW.X, out currentEulerW.Y, out currentEulerW.Z);
- Quaternion justZOrientation = Quaternion.CreateFromAxisAngle(Vector3.UnitZ, currentEulerW.Z);
- // Create the axis that is perpendicular to the up vector and the rotated up vector.
- Vector3 differenceAxisW = Vector3.Cross(Vector3.UnitZ * justZOrientation, Vector3.UnitZ * VehicleOrientation);
- // Compute the angle between those to vectors.
- double differenceAngle = Math.Acos((double)Vector3.Dot(Vector3.UnitZ, Vector3.Normalize(Vector3.UnitZ * VehicleOrientation)));
- // 'differenceAngle' is the angle to rotate and 'differenceAxis' is the plane to rotate in to get the vehicle vertical
- // Reduce the change by the time period it is to change in. Timestep is handled when velocity is applied.
- // TODO: add 'efficiency'.
- // differenceAngle /= m_verticalAttractionTimescale;
- // Create the quaterian representing the correction angle
- Quaternion correctionRotationW = Quaternion.CreateFromAxisAngle(differenceAxisW, (float)differenceAngle);
- // Turn that quaternion into Euler values to make it into velocities to apply.
- Vector3 vertContributionW = Vector3.Zero;
- correctionRotationW.GetEulerAngles(out vertContributionW.X, out vertContributionW.Y, out vertContributionW.Z);
- vertContributionW *= -1f;
- vertContributionW /= m_verticalAttractionTimescale;
- VehicleRotationalVelocity += vertContributionW;
- VDetailLog("{0}, MoveAngular,verticalAttraction,upAxis={1},diffAxis={2},diffAng={3},corrRot={4},contrib={5}",
- ControllingPrim.LocalID,
- vehicleUpAxis,
- differenceAxisW,
- differenceAngle,
- correctionRotationW,
- vertContributionW);
- break;
- }
- case 2:
- {
- Vector3 vertContributionV = Vector3.Zero;
- Vector3 origRotVelW = VehicleRotationalVelocity; // DEBUG DEBUG
- // Take a vector pointing up and convert it from world to vehicle relative coords.
- Vector3 verticalError = Vector3.Normalize(Vector3.UnitZ * VehicleOrientation);
- // If vertical attraction correction is needed, the vector that was pointing up (UnitZ)
- // is now:
- // leaning to one side: rotated around the X axis with the Y value going
- // from zero (nearly straight up) to one (completely to the side)) or
- // leaning front-to-back: rotated around the Y axis with the value of X being between
- // zero and one.
- // The value of Z is how far the rotation is off with 1 meaning none and 0 being 90 degrees.
- // Y error means needed rotation around X axis and visa versa.
- // Since the error goes from zero to one, the asin is the corresponding angle.
- vertContributionV.X = (float)Math.Asin(verticalError.Y);
- // (Tilt forward (positive X) needs to tilt back (rotate negative) around Y axis.)
- vertContributionV.Y = -(float)Math.Asin(verticalError.X);
- // If verticalError.Z is negative, the vehicle is upside down. Add additional push.
- if (verticalError.Z < 0f)
- {
- vertContributionV.X += Math.Sign(vertContributionV.X) * PIOverFour;
- // vertContribution.Y -= PIOverFour;
- }
- // 'vertContrbution' is now the necessary angular correction to correct tilt in one second.
- // Correction happens over a number of seconds.
- Vector3 unscaledContribVerticalErrorV = vertContributionV; // DEBUG DEBUG
- // The correction happens over the user's time period
- vertContributionV /= m_verticalAttractionTimescale;
- // Rotate the vehicle rotation to the world coordinates.
- VehicleRotationalVelocity += (vertContributionV * VehicleOrientation);
- VDetailLog("{0}, MoveAngular,verticalAttraction,,upAxis={1},origRotVW={2},vertError={3},unscaledV={4},eff={5},ts={6},vertContribV={7}",
- ControllingPrim.LocalID,
- vehicleUpAxis,
- origRotVelW,
- verticalError,
- unscaledContribVerticalErrorV,
- m_verticalAttractionEfficiency,
- m_verticalAttractionTimescale,
- vertContributionV);
- break;
- }
- default:
- {
- break;
- }
- }
- }
- }
- // Angular correction to correct the direction the vehicle is pointing to be
- // the direction is should want to be pointing.
- // The vehicle is moving in some direction and correct its orientation to it is pointing
- // in that direction.
- // TODO: implement reference frame.
- public void ComputeAngularDeflection()
- {
- if (BSParam.VehicleEnableAngularDeflection && m_angularDeflectionEfficiency != 0 && VehicleForwardSpeed > 0.2)
- {
- Vector3 deflectContributionV = Vector3.Zero;
- // The direction the vehicle is moving
- Vector3 movingDirection = VehicleVelocity;
- movingDirection.Normalize();
- // If the vehicle is going backward, it is still pointing forward
- movingDirection *= Math.Sign(VehicleForwardSpeed);
- // The direction the vehicle is pointing
- Vector3 pointingDirection = Vector3.UnitX * VehicleOrientation;
- //Predict where the Vehicle will be pointing after AngularVelocity change is applied. This will keep
- // from overshooting and allow this correction to merge with the Vertical Attraction peacefully.
- Vector3 predictedPointingDirection = pointingDirection * Quaternion.CreateFromAxisAngle(VehicleRotationalVelocity, 0f);
- predictedPointingDirection.Normalize();
- // The difference between what is and what should be.
- // Vector3 deflectionError = movingDirection - predictedPointingDirection;
- Vector3 deflectionError = Vector3.Cross(movingDirection, predictedPointingDirection);
- // Don't try to correct very large errors (not our job)
- // if (Math.Abs(deflectionError.X) > PIOverFour) deflectionError.X = PIOverTwo * Math.Sign(deflectionError.X);
- // if (Math.Abs(deflectionError.Y) > PIOverFour) deflectionError.Y = PIOverTwo * Math.Sign(deflectionError.Y);
- // if (Math.Abs(deflectionError.Z) > PIOverFour) deflectionError.Z = PIOverTwo * Math.Sign(deflectionError.Z);
- if (Math.Abs(deflectionError.X) > PIOverFour) deflectionError.X = 0f;
- if (Math.Abs(deflectionError.Y) > PIOverFour) deflectionError.Y = 0f;
- if (Math.Abs(deflectionError.Z) > PIOverFour) deflectionError.Z = 0f;
- // ret = m_angularDeflectionCorrectionMotor(1f, deflectionError);
- // Scale the correction by recovery timescale and efficiency
- // Not modeling a spring so clamp the scale to no more then the arc
- deflectContributionV = (-deflectionError) * ClampInRange(0, m_angularDeflectionEfficiency/m_angularDeflectionTimescale,1f);
- //deflectContributionV /= m_angularDeflectionTimescale;
- // VehicleRotationalVelocity += deflectContributionV * VehicleOrientation;
- VehicleRotationalVelocity += deflectContributionV;
- VDetailLog("{0}, MoveAngular,Deflection,movingDir={1},pointingDir={2},deflectError={3},ret={4}",
- ControllingPrim.LocalID, movingDirection, pointingDirection, deflectionError, deflectContributionV);
- VDetailLog("{0}, MoveAngular,Deflection,fwdSpd={1},defEff={2},defTS={3},PredictedPointingDir={4}",
- ControllingPrim.LocalID, VehicleForwardSpeed, m_angularDeflectionEfficiency, m_angularDeflectionTimescale, predictedPointingDirection);
- }
- }
- // Angular change to rotate the vehicle around the Z axis when the vehicle
- // is tipped around the X axis.
- // From http://wiki.secondlife.com/wiki/Linden_Vehicle_Tutorial:
- // The vertical attractor feature must be enabled in order for the banking behavior to
- // function. The way banking works is this: a rotation around the vehicle's roll-axis will
- // produce a angular velocity around the yaw-axis, causing the vehicle to turn. The magnitude
- // of the yaw effect will be proportional to the
- // VEHICLE_BANKING_EFFICIENCY, the angle of the roll rotation, and sometimes the vehicle's
- // velocity along its preferred axis of motion.
- // The VEHICLE_BANKING_EFFICIENCY can vary between -1 and +1. When it is positive then any
- // positive rotation (by the right-hand rule) about the roll-axis will effect a
- // (negative) torque around the yaw-axis, making it turn to the right--that is the
- // vehicle will lean into the turn, which is how real airplanes and motorcycle's work.
- // Negating the banking coefficient will make it so that the vehicle leans to the
- // outside of the turn (not very "physical" but might allow interesting vehicles so why not?).
- // The VEHICLE_BANKING_MIX is a fake (i.e. non-physical) parameter that is useful for making
- // banking vehicles do what you want rather than what the laws of physics allow.
- // For example, consider a real motorcycle...it must be moving forward in order for
- // it to turn while banking, however video-game motorcycles are often configured
- // to turn in place when at a dead stop--because they are often easier to control
- // that way using the limited interface of the keyboard or game controller. The
- // VEHICLE_BANKING_MIX enables combinations of both realistic and non-realistic
- // banking by functioning as a slider between a banking that is correspondingly
- // totally static (0.0) and totally dynamic (1.0). By "static" we mean that the
- // banking effect depends only on the vehicle's rotation about its roll-axis compared
- // to "dynamic" where the banking is also proportional to its velocity along its
- // roll-axis. Finding the best value of the "mixture" will probably require trial and error.
- // The time it takes for the banking behavior to defeat a preexisting angular velocity about the
- // world z-axis is determined by the VEHICLE_BANKING_TIMESCALE. So if you want the vehicle to
- // bank quickly then give it a banking timescale of about a second or less, otherwise you can
- // make a sluggish vehicle by giving it a timescale of several seconds.
- public void ComputeAngularBanking()
- {
- if (BSParam.VehicleEnableAngularBanking && m_bankingEfficiency != 0 && m_verticalAttractionTimescale < m_verticalAttractionCutoff)
- {
- Vector3 bankingContributionV = Vector3.Zero;
- // Rotate a UnitZ vector (pointing up) to how the vehicle is oriented.
- // As the vehicle rolls to the right or left, the Y value will increase from
- // zero (straight up) to 1 or -1 (full tilt right or left)
- Vector3 rollComponents = Vector3.UnitZ * VehicleOrientation;
- // Figure out the yaw value for this much roll.
- float yawAngle = m_angularMotorDirection.X * m_bankingEfficiency;
- // actual error = static turn error + dynamic turn error
- float mixedYawAngle =(yawAngle * (1f - m_bankingMix)) + ((yawAngle * m_bankingMix) * VehicleForwardSpeed);
- // TODO: the banking effect should not go to infinity but what to limit it to?
- // And what should happen when this is being added to a user defined yaw that is already PI*4?
- mixedYawAngle = ClampInRange(-12, mixedYawAngle, 12);
- // Build the force vector to change rotation from what it is to what it should be
- bankingContributionV.Z = -mixedYawAngle;
- // Don't do it all at once. Fudge because 1 second is too fast with most user defined roll as PI*4.
- bankingContributionV /= m_bankingTimescale * BSParam.VehicleAngularBankingTimescaleFudge;
- //VehicleRotationalVelocity += bankingContributionV * VehicleOrientation;
- VehicleRotationalVelocity += bankingContributionV;
- VDetailLog("{0}, MoveAngular,Banking,rollComp={1},speed={2},rollComp={3},yAng={4},mYAng={5},ret={6}",
- ControllingPrim.LocalID, rollComponents, VehicleForwardSpeed, rollComponents, yawAngle, mixedYawAngle, bankingContributionV);
- }
- }
- // This is from previous instantiations of XXXDynamics.cs.
- // Applies roll reference frame.
- // TODO: is this the right way to separate the code to do this operation?
- // Should this be in MoveAngular()?
- internal void LimitRotation(float timestep)
- {
- Quaternion rotq = VehicleOrientation;
- Quaternion m_rot = rotq;
- if (m_RollreferenceFrame != Quaternion.Identity)
- {
- if (rotq.X >= m_RollreferenceFrame.X)
- {
- m_rot.X = rotq.X - (m_RollreferenceFrame.X / 2);
- }
- if (rotq.Y >= m_RollreferenceFrame.Y)
- {
- m_rot.Y = rotq.Y - (m_RollreferenceFrame.Y / 2);
- }
- if (rotq.X <= -m_RollreferenceFrame.X)
- {
- m_rot.X = rotq.X + (m_RollreferenceFrame.X / 2);
- }
- if (rotq.Y <= -m_RollreferenceFrame.Y)
- {
- m_rot.Y = rotq.Y + (m_RollreferenceFrame.Y / 2);
- }
- }
- if ((m_flags & VehicleFlag.LOCK_ROTATION) != 0)
- {
- m_rot.X = 0;
- m_rot.Y = 0;
- }
- if (rotq != m_rot)
- {
- VehicleOrientation = m_rot;
- VDetailLog("{0}, LimitRotation,done,orig={1},new={2}", ControllingPrim.LocalID, rotq, m_rot);
- }
- }
- // Given a friction vector (reduction in seconds) and a timestep, return the factor to reduce
- // some value by to apply this friction.
- private Vector3 ComputeFrictionFactor(Vector3 friction, float pTimestep)
- {
- Vector3 frictionFactor = Vector3.Zero;
- if (friction != BSMotor.InfiniteVector)
- {
- // frictionFactor = (Vector3.One / FrictionTimescale) * timeStep;
- // Individual friction components can be 'infinite' so compute each separately.
- frictionFactor.X = (friction.X == BSMotor.Infinite) ? 0f : (1f / friction.X);
- frictionFactor.Y = (friction.Y == BSMotor.Infinite) ? 0f : (1f / friction.Y);
- frictionFactor.Z = (friction.Z == BSMotor.Infinite) ? 0f : (1f / friction.Z);
- frictionFactor *= pTimestep;
- }
- return frictionFactor;
- }
- private float SortedClampInRange(float clampa, float val, float clampb)
- {
- if (clampa > clampb)
- {
- float temp = clampa;
- clampa = clampb;
- clampb = temp;
- }
- return ClampInRange(clampa, val, clampb);
- }
- private float ClampInRange(float low, float val, float high)
- {
- return Math.Max(low, Math.Min(val, high));
- // return Utils.Clamp(val, low, high);
- }
- // Invoke the detailed logger and output something if it's enabled.
- private void VDetailLog(string msg, params Object[] args)
- {
- if (ControllingPrim.PhysScene.VehicleLoggingEnabled)
- ControllingPrim.PhysScene.DetailLog(msg, args);
- }
- }
- }
|