/* * Copyright (c) Contributors, http://opensimulator.org/ * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSimulator Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ using OpenSim.Region.ScriptEngine.Shared.ScriptBase; using OpenSim.Region.ScriptEngine.Yengine; using System; using System.Collections.Generic; using System.IO; using System.Reflection; using System.Reflection.Emit; using System.Runtime.Serialization; using System.Text; using System.Threading; using LSL_Float = OpenSim.Region.ScriptEngine.Shared.LSL_Types.LSLFloat; using LSL_Integer = OpenSim.Region.ScriptEngine.Shared.LSL_Types.LSLInteger; using LSL_Key = OpenSim.Region.ScriptEngine.Shared.LSL_Types.LSLString; using LSL_List = OpenSim.Region.ScriptEngine.Shared.LSL_Types.list; using LSL_Rotation = OpenSim.Region.ScriptEngine.Shared.LSL_Types.Quaternion; using LSL_String = OpenSim.Region.ScriptEngine.Shared.LSL_Types.LSLString; using LSL_Vector = OpenSim.Region.ScriptEngine.Shared.LSL_Types.Vector3; /** * @brief translate a reduced script token into corresponding CIL code. * The single script token contains a tokenized and textured version of the whole script file. */ namespace OpenSim.Region.ScriptEngine.Yengine { public interface IScriptCodeGen { ScriptMyILGen ilGen { get; } // the output instruction stream void ErrorMsg(Token token, string message); void PushDefaultValue(TokenType type); void PushXMRInst(); } public class ScriptCodeGen: IScriptCodeGen { public static readonly string OBJECT_CODE_MAGIC = "YObjectCode"; // reserve positive version values for original xmr public static int COMPILED_VERSION_VALUE = -2; // decremented when compiler or object file changes public static readonly int CALL_FRAME_MEMUSE = 64; public static readonly int STRING_LEN_TO_MEMUSE = 2; public static Type xmrInstSuperType = null; // typeof whatever is actually malloc'd for script instances // - must inherit from XMRInstAbstract // Static tables that there only needs to be one copy of for all. private static VarDict legalEventHandlers = CreateLegalEventHandlers(); private static CompValu[] zeroCompValus = new CompValu[0]; private static TokenType[] zeroArgs = new TokenType[0]; private static TokenTypeBool tokenTypeBool = new TokenTypeBool(null); private static TokenTypeExc tokenTypeExc = new TokenTypeExc(null); private static TokenTypeFloat tokenTypeFlt = new TokenTypeFloat(null); private static TokenTypeInt tokenTypeInt = new TokenTypeInt(null); private static TokenTypeObject tokenTypeObj = new TokenTypeObject(null); private static TokenTypeRot tokenTypeRot = new TokenTypeRot(null); private static TokenTypeStr tokenTypeStr = new TokenTypeStr(null); private static TokenTypeVec tokenTypeVec = new TokenTypeVec(null); private static Type[] instanceTypeArg = new Type[] { typeof(XMRInstAbstract) }; private static string[] instanceNameArg = new string[] { "$xmrthis" }; private static ConstructorInfo lslFloatConstructorInfo = typeof(LSL_Float).GetConstructor(new Type[] { typeof(double) }); private static ConstructorInfo lslIntegerConstructorInfo = typeof(LSL_Integer).GetConstructor(new Type[] { typeof(int) }); private static ConstructorInfo lslListConstructorInfo = typeof(LSL_List).GetConstructor(new Type[] { typeof(object[]) }); public static ConstructorInfo lslRotationConstructorInfo = typeof(LSL_Rotation).GetConstructor(new Type[] { typeof(double), typeof(double), typeof(double), typeof(double) }); private static ConstructorInfo lslStringConstructorInfo = typeof(LSL_String).GetConstructor(new Type[] { typeof(string) }); public static ConstructorInfo lslVectorConstructorInfo = typeof(LSL_Vector).GetConstructor(new Type[] { typeof(double), typeof(double), typeof(double) }); private static ConstructorInfo scriptBadCallNoExceptionConstructorInfo = typeof(ScriptBadCallNoException).GetConstructor(new Type[] { typeof(int) }); private static ConstructorInfo scriptChangeStateExceptionConstructorInfo = typeof(ScriptChangeStateException).GetConstructor(new Type[] { typeof(int) }); private static ConstructorInfo scriptRestoreCatchExceptionConstructorInfo = typeof(ScriptRestoreCatchException).GetConstructor(new Type[] { typeof(Exception) }); private static ConstructorInfo scriptUndefinedStateExceptionConstructorInfo = typeof(ScriptUndefinedStateException).GetConstructor(new Type[] { typeof(string) }); private static ConstructorInfo sdtClassConstructorInfo = typeof(XMRSDTypeClObj).GetConstructor(new Type[] { typeof(XMRInstAbstract), typeof(int) }); private static ConstructorInfo xmrArrayConstructorInfo = typeof(XMR_Array).GetConstructor(new Type[] { typeof(XMRInstAbstract) }); private static FieldInfo callModeFieldInfo = typeof(XMRInstAbstract).GetField("callMode"); private static FieldInfo doGblInitFieldInfo = typeof(XMRInstAbstract).GetField("doGblInit"); private static FieldInfo ehArgsFieldInfo = typeof(XMRInstAbstract).GetField("ehArgs"); private static FieldInfo rotationXFieldInfo = typeof(LSL_Rotation).GetField("x"); private static FieldInfo rotationYFieldInfo = typeof(LSL_Rotation).GetField("y"); private static FieldInfo rotationZFieldInfo = typeof(LSL_Rotation).GetField("z"); private static FieldInfo rotationSFieldInfo = typeof(LSL_Rotation).GetField("s"); private static FieldInfo sdtXMRInstFieldInfo = typeof(XMRSDTypeClObj).GetField("xmrInst"); private static FieldInfo stackLeftFieldInfo = typeof(XMRInstAbstract).GetField("m_StackLeft"); private static FieldInfo vectorXFieldInfo = typeof(LSL_Vector).GetField("x"); private static FieldInfo vectorYFieldInfo = typeof(LSL_Vector).GetField("y"); private static FieldInfo vectorZFieldInfo = typeof(LSL_Vector).GetField("z"); private static MethodInfo arrayClearMethodInfo = typeof(XMR_Array).GetMethod("__pub_clear", new Type[] { }); private static MethodInfo arrayCountMethodInfo = typeof(XMR_Array).GetMethod("__pub_count", new Type[] { }); private static MethodInfo arrayIndexMethodInfo = typeof(XMR_Array).GetMethod("__pub_index", new Type[] { typeof(int) }); private static MethodInfo arrayValueMethodInfo = typeof(XMR_Array).GetMethod("__pub_value", new Type[] { typeof(int) }); private static MethodInfo checkRunStackMethInfo = typeof(XMRInstAbstract).GetMethod("CheckRunStack", new Type[] { }); private static MethodInfo checkRunQuickMethInfo = typeof(XMRInstAbstract).GetMethod("CheckRunQuick", new Type[] { }); private static MethodInfo ehArgUnwrapFloat = GetStaticMethod(typeof(TypeCast), "EHArgUnwrapFloat", new Type[] { typeof(object) }); private static MethodInfo ehArgUnwrapInteger = GetStaticMethod(typeof(TypeCast), "EHArgUnwrapInteger", new Type[] { typeof(object) }); private static MethodInfo ehArgUnwrapRotation = GetStaticMethod(typeof(TypeCast), "EHArgUnwrapRotation", new Type[] { typeof(object) }); private static MethodInfo ehArgUnwrapString = GetStaticMethod(typeof(TypeCast), "EHArgUnwrapString", new Type[] { typeof(object) }); private static MethodInfo ehArgUnwrapVector = GetStaticMethod(typeof(TypeCast), "EHArgUnwrapVector", new Type[] { typeof(object) }); private static MethodInfo xmrArrPubIndexMethod = typeof(XMR_Array).GetMethod("__pub_index", new Type[] { typeof(int) }); private static MethodInfo xmrArrPubValueMethod = typeof(XMR_Array).GetMethod("__pub_value", new Type[] { typeof(int) }); private static MethodInfo captureStackFrameMethodInfo = typeof(XMRInstAbstract).GetMethod("CaptureStackFrame", new Type[] { typeof(string), typeof(int), typeof(int) }); private static MethodInfo restoreStackFrameMethodInfo = typeof(XMRInstAbstract).GetMethod("RestoreStackFrame", new Type[] { typeof(string), typeof(int).MakeByRefType() }); private static MethodInfo stringCompareMethodInfo = GetStaticMethod(typeof(String), "Compare", new Type[] { typeof(string), typeof(string), typeof(StringComparison) }); private static MethodInfo stringConcat2MethodInfo = GetStaticMethod(typeof(String), "Concat", new Type[] { typeof(string), typeof(string) }); private static MethodInfo stringConcat3MethodInfo = GetStaticMethod(typeof(String), "Concat", new Type[] { typeof(string), typeof(string), typeof(string) }); private static MethodInfo stringConcat4MethodInfo = GetStaticMethod(typeof(String), "Concat", new Type[] { typeof(string), typeof(string), typeof(string), typeof(string) }); private static MethodInfo lslRotationNegateMethodInfo = GetStaticMethod(typeof(ScriptCodeGen), "LSLRotationNegate", new Type[] { typeof(LSL_Rotation) }); private static MethodInfo lslVectorNegateMethodInfo = GetStaticMethod(typeof(ScriptCodeGen), "LSLVectorNegate", new Type[] { typeof(LSL_Vector) }); private static MethodInfo scriptRestoreCatchExceptionUnwrap = GetStaticMethod(typeof(ScriptRestoreCatchException), "Unwrap", new Type[] { typeof(Exception) }); private static MethodInfo thrownExceptionWrapMethodInfo = GetStaticMethod(typeof(ScriptThrownException), "Wrap", new Type[] { typeof(object) }); private static MethodInfo catchExcToStrMethodInfo = GetStaticMethod(typeof(ScriptCodeGen), "CatchExcToStr", new Type[] { typeof(Exception) }); private static MethodInfo consoleWriteMethodInfo = GetStaticMethod(typeof(ScriptCodeGen), "ConsoleWrite", new Type[] { typeof(object) }); public static void ConsoleWrite(object o) { if(o == null) o = "<>"; Console.Write(o.ToString()); } public static bool CodeGen(TokenScript tokenScript, BinaryWriter objFileWriter, string sourceHash) { // Run compiler such that it has a 'this' context for convenience. ScriptCodeGen scg = new ScriptCodeGen(tokenScript, objFileWriter, sourceHash); // Return pointer to resultant script object code. return !scg.youveAnError; } // There is one set of these variables for each script being compiled. private bool mightGetHere = false; private bool youveAnError = false; private BreakContTarg curBreakTarg = null; private BreakContTarg curContTarg = null; private int lastErrorLine = 0; private int nStates = 0; private string sourceHash; private string lastErrorFile = ""; private string[] stateNames; private XMRInstArSizes glblSizes = new XMRInstArSizes(); private Token errorMessageToken = null; private TokenDeclVar curDeclFunc = null; private TokenStmtBlock curStmtBlock = null; private BinaryWriter objFileWriter = null; private TokenScript tokenScript = null; public int tempCompValuNum = 0; private TokenDeclSDTypeClass currentSDTClass = null; private Dictionary stateIndices = null; // These get cleared at beginning of every function definition private ScriptMyLocal instancePointer; // holds XMRInstanceSuperType pointer private ScriptMyLabel retLabel = null; // where to jump to exit function private ScriptMyLocal retValue = null; private ScriptMyLocal actCallNo = null; // for the active try/catch/finally stack or the big one outside them all private LinkedList actCallLabels = new LinkedList(); // for the active try/catch/finally stack or the big one outside them all private LinkedList allCallLabels = new LinkedList(); // this holds each and every one for all stacks in total public CallLabel openCallLabel = null; // only one call label can be open at a time // - the call label is open from the time of CallPre() until corresponding CallPost() // - so no non-trivial pushes/pops etc allowed between a CallPre() and a CallPost() public List HeapLocals = new List(); private ScriptMyILGen _ilGen; public ScriptMyILGen ilGen { get { return _ilGen; } } private ScriptCodeGen(TokenScript tokenScript, BinaryWriter objFileWriter, string sourceHash) { this.tokenScript = tokenScript; this.objFileWriter = objFileWriter; this.sourceHash = sourceHash; try { PerformCompilation(); } catch { // if we've an error, just punt on any exception // it's probably just a null reference from something // not being filled in etc. if(!youveAnError) throw; } finally { objFileWriter = null; } } /** * @brief Convert 'tokenScript' to 'objFileWriter' format. * 'tokenScript' is a parsed/reduced abstract syntax tree of the script source file * 'objFileWriter' is a serialized form of the CIL code that we generate */ private void PerformCompilation() { // errorMessageToken is used only when the given token doesn't have a // output delegate associated with it such as for backend API functions // that only have one copy for the whole system. It is kept up-to-date // approximately but is rarely needed so going to assume it doesn't have // to be exact. errorMessageToken = tokenScript; // Set up dictionary to translate state names to their index number. stateIndices = new Dictionary(); // Assign each state its own unique index. // The default state gets 0. nStates = 0; tokenScript.defaultState.body.index = nStates++; stateIndices.Add("default", 0); foreach(KeyValuePair kvp in tokenScript.states) { TokenDeclState declState = kvp.Value; declState.body.index = nStates++; stateIndices.Add(declState.name.val, declState.body.index); } // Make up an array that translates state indices to state name strings. stateNames = new string[nStates]; stateNames[0] = "default"; foreach(KeyValuePair kvp in tokenScript.states) { TokenDeclState declState = kvp.Value; stateNames[declState.body.index] = declState.name.val; } // Make sure we have delegates for all script-defined functions and methods, // creating anonymous ones if needed. Note that this includes all property // getter and setter methods. foreach(TokenDeclVar declFunc in tokenScript.variablesStack) { if(declFunc.retType != null) { declFunc.GetDelType(); } } while(true) { bool itIsAGoodDayToDie = true; try { foreach(TokenDeclSDType sdType in tokenScript.sdSrcTypesValues) { itIsAGoodDayToDie = false; if(sdType is TokenDeclSDTypeClass) { TokenDeclSDTypeClass sdtClass = (TokenDeclSDTypeClass)sdType; foreach(TokenDeclVar declFunc in sdtClass.members) { if(declFunc.retType != null) { declFunc.GetDelType(); if(declFunc.funcNameSig.val.StartsWith("$ctor(")) { // this is for the "$new()" static method that we create below. // See GenerateStmtNewobj() etc. new TokenTypeSDTypeDelegate(declFunc, sdtClass.MakeRefToken(declFunc), declFunc.argDecl.types, tokenScript); } } } } if(sdType is TokenDeclSDTypeInterface) { TokenDeclSDTypeInterface sdtIFace = (TokenDeclSDTypeInterface)sdType; foreach(TokenDeclVar declFunc in sdtIFace.methsNProps) { if(declFunc.retType != null) { declFunc.GetDelType(); } } } itIsAGoodDayToDie = true; } break; } catch(InvalidOperationException) { if(!itIsAGoodDayToDie) throw; // fetching the delegate created an anonymous entry in tokenScript.sdSrcTypesValues // which made the foreach statement puque, so start over... } } // No more types can be defined or we won't be able to write them to the object file. tokenScript.sdSrcTypesSeal(); // Assign all global variables a slot in its corresponding XMRInstance.gbls[] array. // Global variables are simply elements of those arrays at runtime, thus we don't need to create // an unique class for each script, we can just use XMRInstance as is for all. foreach(TokenDeclVar declVar in tokenScript.variablesStack) { // Omit 'constant' variables as they are coded inline so don't need a slot. if(declVar.constant) continue; // Do functions later. if(declVar.retType != null) continue; // Create entry in the value array for the variable or property. declVar.location = new CompValuGlobalVar(declVar, glblSizes); } // Likewise for any static fields in script-defined classes. // They can be referenced anywhere by ., see // GenerateFromLValSField(). foreach(TokenDeclSDType sdType in tokenScript.sdSrcTypesValues) { if(!(sdType is TokenDeclSDTypeClass)) continue; TokenDeclSDTypeClass sdtClass = (TokenDeclSDTypeClass)sdType; foreach(TokenDeclVar declVar in sdtClass.members) { // Omit 'constant' variables as they are coded inline so don't need a slot. if(declVar.constant) continue; // Do methods later. if(declVar.retType != null) continue; // Ignore non-static fields for now. // They get assigned below. if((declVar.sdtFlags & ScriptReduce.SDT_STATIC) == 0) continue; // Create entry in the value array for the static field or static property. declVar.location = new CompValuGlobalVar(declVar, glblSizes); } } // Assign slots for all interface method prototypes. // These indices are used to index the array of delegates that holds a class' implementation of an // interface. // Properties do not get a slot because they aren't called as such. But their corresponding // $get() and $set() methods are in the table and they each get a slot. foreach(TokenDeclSDType sdType in tokenScript.sdSrcTypesValues) { if(!(sdType is TokenDeclSDTypeInterface)) continue; TokenDeclSDTypeInterface sdtIFace = (TokenDeclSDTypeInterface)sdType; int vti = 0; foreach(TokenDeclVar im in sdtIFace.methsNProps) { if((im.getProp == null) && (im.setProp == null)) { im.vTableIndex = vti++; } } } // Assign slots for all instance fields and virtual methods of script-defined classes. int maxExtends = tokenScript.sdSrcTypesCount; bool didOne; do { didOne = false; foreach(TokenDeclSDType sdType in tokenScript.sdSrcTypesValues) { if(!(sdType is TokenDeclSDTypeClass)) continue; TokenDeclSDTypeClass sdtClass = (TokenDeclSDTypeClass)sdType; if(sdtClass.slotsAssigned) continue; // If this class extends another, the extended class has to already // be set up, because our slots add on to the end of the extended class. TokenDeclSDTypeClass extends = sdtClass.extends; if(extends != null) { if(!extends.slotsAssigned) continue; sdtClass.instSizes = extends.instSizes; sdtClass.numVirtFuncs = extends.numVirtFuncs; sdtClass.numInterfaces = extends.numInterfaces; int n = maxExtends; for(TokenDeclSDTypeClass ex = extends; ex != null; ex = ex.extends) { if(--n < 0) break; } if(n < 0) { ErrorMsg(sdtClass, "loop in extended classes"); sdtClass.slotsAssigned = true; continue; } } // Extended class's slots all assigned, assign our instance fields // slots in the XMRSDTypeClObj arrays. foreach(TokenDeclVar declVar in sdtClass.members) { if(declVar.retType != null) continue; if(declVar.constant) continue; if((declVar.sdtFlags & ScriptReduce.SDT_STATIC) != 0) continue; if((declVar.getProp == null) && (declVar.setProp == null)) { declVar.type.AssignVarSlot(declVar, sdtClass.instSizes); } } // ... and assign virtual method vtable slots. // // - : error if any overridden method, doesn't need a slot // abstract : error if any overridden method, alloc new slot but leave it empty // new : ignore any overridden method, doesn't need a slot // new abstract : ignore any overridden method, alloc new slot but leave it empty // override : must have overridden abstract/virtual, use old slot // override abstract : must have overridden abstract, use old slot but it is still empty // static : error if any overridden method, doesn't need a slot // static new : ignore any overridden method, doesn't need a slot // virtual : error if any overridden method, alloc new slot and fill it in // virtual new : ignore any overridden method, alloc new slot and fill it in foreach(TokenDeclVar declFunc in sdtClass.members) { if(declFunc.retType == null) continue; curDeclFunc = declFunc; // See if there is a method in an extended class that this method overshadows. // If so, check for various conflicts. // In any case, SDT_NEW on our method means to ignore any overshadowed method. string declLongName = sdtClass.longName.val + "." + declFunc.funcNameSig.val; uint declFlags = declFunc.sdtFlags; TokenDeclVar overridden = null; if((declFlags & ScriptReduce.SDT_NEW) == 0) { for(TokenDeclSDTypeClass sdtd = extends; sdtd != null; sdtd = sdtd.extends) { overridden = FindExactWithRet(sdtd.members, declFunc.name, declFunc.retType, declFunc.argDecl.types); if(overridden != null) break; } } if(overridden != null) do { string overLongName = overridden.sdtClass.longName.val; uint overFlags = overridden.sdtFlags; // See if overridden method allows itself to be overridden. if((overFlags & ScriptReduce.SDT_ABSTRACT) != 0) { if((declFlags & (ScriptReduce.SDT_ABSTRACT | ScriptReduce.SDT_OVERRIDE)) == 0) { ErrorMsg(declFunc, declLongName + " overshadows abstract " + overLongName + " but is not marked abstract, new or override"); break; } } else if((overFlags & ScriptReduce.SDT_FINAL) != 0) { ErrorMsg(declFunc, declLongName + " overshadows final " + overLongName + " but is not marked new"); } else if((overFlags & (ScriptReduce.SDT_OVERRIDE | ScriptReduce.SDT_VIRTUAL)) != 0) { if((declFlags & (ScriptReduce.SDT_NEW | ScriptReduce.SDT_OVERRIDE)) == 0) { ErrorMsg(declFunc, declLongName + " overshadows virtual " + overLongName + " but is not marked new or override"); break; } } else { ErrorMsg(declFunc, declLongName + " overshadows non-virtual " + overLongName + " but is not marked new"); break; } // See if our method is capable of overriding the other method. if((declFlags & ScriptReduce.SDT_ABSTRACT) != 0) { if((overFlags & ScriptReduce.SDT_ABSTRACT) == 0) { ErrorMsg(declFunc, declLongName + " abstract overshadows non-abstract " + overLongName + " but is not marked new"); break; } } else if((declFlags & ScriptReduce.SDT_OVERRIDE) != 0) { if((overFlags & (ScriptReduce.SDT_ABSTRACT | ScriptReduce.SDT_OVERRIDE | ScriptReduce.SDT_VIRTUAL)) == 0) { ErrorMsg(declFunc, declLongName + " override overshadows non-abstract/non-virtual " + overLongName); break; } } else { ErrorMsg(declFunc, declLongName + " overshadows " + overLongName + " but is not marked new"); break; } } while(false); // Now we can assign it a vtable slot if it needs one (ie, it is virtual). declFunc.vTableIndex = -1; if(overridden != null) { declFunc.vTableIndex = overridden.vTableIndex; } else if((declFlags & ScriptReduce.SDT_OVERRIDE) != 0) { ErrorMsg(declFunc, declLongName + " marked override but nothing matching found that it overrides"); } if((declFlags & (ScriptReduce.SDT_ABSTRACT | ScriptReduce.SDT_VIRTUAL)) != 0) { declFunc.vTableIndex = sdtClass.numVirtFuncs++; } } curDeclFunc = null; // ... and assign implemented interface slots. // Note that our implementations of a given interface is completely independent of any // rootward class's implementation of that same interface. int nIFaces = sdtClass.numInterfaces + sdtClass.implements.Count; sdtClass.iFaces = new TokenDeclSDTypeInterface[nIFaces]; sdtClass.iImplFunc = new TokenDeclVar[nIFaces][]; for(int i = 0; i < sdtClass.numInterfaces; i++) { sdtClass.iFaces[i] = extends.iFaces[i]; sdtClass.iImplFunc[i] = extends.iImplFunc[i]; } foreach(TokenDeclSDTypeInterface intf in sdtClass.implements) { int i = sdtClass.numInterfaces++; sdtClass.iFaces[i] = intf; sdtClass.intfIndices.Add(intf.longName.val, i); int nMeths = 0; foreach(TokenDeclVar m in intf.methsNProps) { if((m.getProp == null) && (m.setProp == null)) nMeths++; } sdtClass.iImplFunc[i] = new TokenDeclVar[nMeths]; } foreach(TokenDeclVar classMeth in sdtClass.members) { if(classMeth.retType == null) continue; curDeclFunc = classMeth; for(TokenIntfImpl intfImpl = classMeth.implements; intfImpl != null; intfImpl = (TokenIntfImpl)intfImpl.nextToken) { // One of the class methods implements an interface method. // Try to find the interface method that is implemented and verify its signature. TokenDeclSDTypeInterface intfType = intfImpl.intfType.decl; TokenDeclVar intfMeth = FindExactWithRet(intfType.methsNProps, intfImpl.methName, classMeth.retType, classMeth.argDecl.types); if(intfMeth == null) { ErrorMsg(intfImpl, "interface does not define method " + intfImpl.methName.val + classMeth.argDecl.GetArgSig()); continue; } // See if this class was declared to implement that interface. bool found = false; foreach(TokenDeclSDTypeInterface intf in sdtClass.implements) { if(intf == intfType) { found = true; break; } } if(!found) { ErrorMsg(intfImpl, "class not declared to implement " + intfType.longName.val); continue; } // Get index in iFaces[] and iImplFunc[] arrays. // Start scanning from the end in case one of our rootward classes also implements the interface. // We should always be successful because we know by now that this class implements the interface. int i; for(i = sdtClass.numInterfaces; --i >= 0;) { if(sdtClass.iFaces[i] == intfType) break; } // Now remember which of the class methods implements that interface method. int j = intfMeth.vTableIndex; if(sdtClass.iImplFunc[i][j] != null) { ErrorMsg(intfImpl, "also implemented by " + sdtClass.iImplFunc[i][j].funcNameSig.val); continue; } sdtClass.iImplFunc[i][j] = classMeth; } } curDeclFunc = null; // Now make sure this class implements all methods for all declared interfaces. for(int i = sdtClass.numInterfaces - sdtClass.implements.Count; i < sdtClass.numInterfaces; i++) { TokenDeclVar[] implementations = sdtClass.iImplFunc[i]; for(int j = implementations.Length; --j >= 0;) { if(implementations[j] == null) { TokenDeclSDTypeInterface intf = sdtClass.iFaces[i]; TokenDeclVar meth = null; foreach(TokenDeclVar im in intf.methsNProps) { if(im.vTableIndex == j) { meth = im; break; } } ErrorMsg(sdtClass, "does not implement " + intf.longName.val + "." + meth.funcNameSig.val); } } } // All slots for this class have been assigned. sdtClass.slotsAssigned = true; didOne = true; } } while(didOne); // Compute final values for all variables/fields declared as 'constant'. // Note that there may be forward references. do { didOne = false; foreach(TokenDeclVar tdv in tokenScript.variablesStack) { if(tdv.constant && !(tdv.init is TokenRValConst)) { tdv.init = tdv.init.TryComputeConstant(LookupInitConstants, ref didOne); } } foreach(TokenDeclSDType sdType in tokenScript.sdSrcTypesValues) { if(!(sdType is TokenDeclSDTypeClass)) continue; currentSDTClass = (TokenDeclSDTypeClass)sdType; foreach(TokenDeclVar tdv in currentSDTClass.members) { if(tdv.constant && !(tdv.init is TokenRValConst)) { tdv.init = tdv.init.TryComputeConstant(LookupInitConstants, ref didOne); } } } currentSDTClass = null; } while(didOne); // Now we should be able to assign all those constants their type and location. foreach(TokenDeclVar tdv in tokenScript.variablesStack) { if(tdv.constant) { if(tdv.init is TokenRValConst) { TokenRValConst rvc = (TokenRValConst)tdv.init; tdv.type = rvc.tokType; tdv.location = rvc.GetCompValu(); } else { ErrorMsg(tdv, "value is not constant"); } } } foreach(TokenDeclSDType sdType in tokenScript.sdSrcTypesValues) { if(!(sdType is TokenDeclSDTypeClass)) continue; currentSDTClass = (TokenDeclSDTypeClass)sdType; foreach(TokenDeclVar tdv in currentSDTClass.members) { if(tdv.constant) { if(tdv.init is TokenRValConst) { TokenRValConst rvc = (TokenRValConst)tdv.init; tdv.type = rvc.tokType; tdv.location = rvc.GetCompValu(); } else { ErrorMsg(tdv, "value is not constant"); } } } } currentSDTClass = null; // For all classes that define all the methods needed for the class, ie, they aren't abstract, // define a static class.$new() method with same args as the $ctor(s). This will allow the // class to be instantiated via the new operator. foreach(TokenDeclSDType sdType in tokenScript.sdSrcTypesValues) { if(!(sdType is TokenDeclSDTypeClass)) continue; TokenDeclSDTypeClass sdtClass = (TokenDeclSDTypeClass)sdType; // See if the class as it stands would be able to fill every slot of its vtable. bool[] filled = new bool[sdtClass.numVirtFuncs]; int numFilled = 0; for(TokenDeclSDTypeClass sdtc = sdtClass; sdtc != null; sdtc = sdtc.extends) { foreach(TokenDeclVar tdf in sdtc.members) { if((tdf.retType != null) && (tdf.vTableIndex >= 0) && ((tdf.sdtFlags & ScriptReduce.SDT_ABSTRACT) == 0)) { if(!filled[tdf.vTableIndex]) { filled[tdf.vTableIndex] = true; numFilled++; } } } } // If so, define a static class.$new() method for every constructor defined for the class. // Give it the same access (private/protected/public) as the script declared for the constructor. // Note that the reducer made sure there is at least a default constructor for every class. if(numFilled >= sdtClass.numVirtFuncs) { List newobjDeclFuncs = new List(); foreach(TokenDeclVar ctorDeclFunc in sdtClass.members) { if((ctorDeclFunc.funcNameSig != null) && ctorDeclFunc.funcNameSig.val.StartsWith("$ctor(")) { TokenDeclVar newobjDeclFunc = DefineNewobjFunc(ctorDeclFunc); newobjDeclFuncs.Add(newobjDeclFunc); } } foreach(TokenDeclVar newobjDeclFunc in newobjDeclFuncs) { sdtClass.members.AddEntry(newobjDeclFunc); } } } // Write fixed portion of object file. objFileWriter.Write(OBJECT_CODE_MAGIC.ToCharArray()); objFileWriter.Write(COMPILED_VERSION_VALUE); objFileWriter.Write(sourceHash); glblSizes.WriteToFile(objFileWriter); objFileWriter.Write(nStates); for(int i = 0; i < nStates; i++) { objFileWriter.Write(stateNames[i]); } // For debugging, we also write out global variable array slot assignments. foreach(TokenDeclVar declVar in tokenScript.variablesStack) { if(declVar.retType == null) { WriteOutGblAssignment("", declVar); } } foreach(TokenDeclSDType sdType in tokenScript.sdSrcTypesValues) { if(!(sdType is TokenDeclSDTypeClass)) continue; TokenDeclSDTypeClass sdtClass = (TokenDeclSDTypeClass)sdType; foreach(TokenDeclVar declVar in sdtClass.members) { if((declVar.sdtFlags & ScriptReduce.SDT_STATIC) != 0) { WriteOutGblAssignment(sdtClass.longName.val + ".", declVar); } } } objFileWriter.Write(""); // Write out script-defined types. foreach(TokenDeclSDType sdType in tokenScript.sdSrcTypesValues) { objFileWriter.Write(sdType.longName.val); sdType.WriteToFile(objFileWriter); } objFileWriter.Write(""); // Output function headers then bodies. // Do all headers first in case bodies do forward references. // Do both global functions, script-defined class static methods and // script-defined instance methods, as we handle the differences // during compilation of the functions/methods themselves. // headers foreach(TokenDeclVar declFunc in tokenScript.variablesStack) { if(declFunc.retType != null) GenerateMethodHeader(declFunc); } foreach(TokenDeclSDType sdType in tokenScript.sdSrcTypesValues) { if(sdType is TokenDeclSDTypeClass) { TokenDeclSDTypeClass sdtClass = (TokenDeclSDTypeClass)sdType; foreach(TokenDeclVar declFunc in sdtClass.members) { if((declFunc.retType != null) && ((declFunc.sdtFlags & ScriptReduce.SDT_ABSTRACT) == 0)) GenerateMethodHeader(declFunc); } } } // now bodies foreach(TokenDeclVar declFunc in tokenScript.variablesStack) { if(declFunc.retType != null) GenerateMethodBody(declFunc); } foreach(TokenDeclSDType sdType in tokenScript.sdSrcTypesValues) { if(sdType is TokenDeclSDTypeClass) { TokenDeclSDTypeClass sdtClass = (TokenDeclSDTypeClass)sdType; foreach(TokenDeclVar declFunc in sdtClass.members) { if((declFunc.retType != null) && ((declFunc.sdtFlags & ScriptReduce.SDT_ABSTRACT) == 0)) GenerateMethodBody(declFunc); } } } // Output default state event handler functions. // Each event handler is a private static method named 'default '. // Splice in a default state_entry() handler if none defined so we can init global vars. TokenDeclVar defaultStateEntry = null; for(defaultStateEntry = tokenScript.defaultState.body.eventFuncs; defaultStateEntry != null; defaultStateEntry = (TokenDeclVar)defaultStateEntry.nextToken) { if(defaultStateEntry.funcNameSig.val == "state_entry()") break; } if(defaultStateEntry == null) { defaultStateEntry = new TokenDeclVar(tokenScript.defaultState.body, null, tokenScript); defaultStateEntry.name = new TokenName(tokenScript.defaultState.body, "state_entry"); defaultStateEntry.retType = new TokenTypeVoid(tokenScript.defaultState.body); defaultStateEntry.argDecl = new TokenArgDecl(tokenScript.defaultState.body); defaultStateEntry.body = new TokenStmtBlock(tokenScript.defaultState.body); defaultStateEntry.body.function = defaultStateEntry; defaultStateEntry.nextToken = tokenScript.defaultState.body.eventFuncs; tokenScript.defaultState.body.eventFuncs = defaultStateEntry; } GenerateStateEventHandlers("default", tokenScript.defaultState.body); // Output script-defined state event handler methods. // Each event handler is a private static method named foreach(KeyValuePair kvp in tokenScript.states) { TokenDeclState declState = kvp.Value; GenerateStateEventHandlers(declState.name.val, declState.body); } ScriptObjWriter.TheEnd(objFileWriter); } /** * @brief Write out what slot was assigned for a global or sdtclass static variable. * Constants, functions, instance fields, methods, properties do not have slots in the global variables arrays. */ private void WriteOutGblAssignment(string pfx, TokenDeclVar declVar) { if(!declVar.constant && (declVar.retType == null) && (declVar.getProp == null) && (declVar.setProp == null)) { objFileWriter.Write(pfx + declVar.name.val); // string objFileWriter.Write(declVar.vTableArray.Name); // string objFileWriter.Write(declVar.vTableIndex); // int } } /** * @brief generate event handler code * Writes out a function definition for each state handler * named * * However, each has just 'XMRInstance __sw' as its single argument * and each of its user-visible argments is extracted from __sw.ehArgs[]. * * So we end up generating something like this: * * private static void (XMRInstance __sw) * { * = ()__sw.ehArgs[0]; * = ()__sw.ehArgs[1]; * * ... script code ... * } * * The continuations code assumes there will be no references to ehArgs[] * after the first call to CheckRun() as CheckRun() makes no attempt to * serialize the ehArgs[] array, as doing so would be redundant. Any values * from ehArgs[] that are being used will be in local stack variables and * thus preserved that way. */ private void GenerateStateEventHandlers(string statename, TokenStateBody body) { Dictionary statehandlers = new Dictionary(); for(Token t = body.eventFuncs; t != null; t = t.nextToken) { TokenDeclVar tdv = (TokenDeclVar)t; string eventname = tdv.GetSimpleName(); if(statehandlers.ContainsKey(eventname)) { ErrorMsg(tdv, "event handler " + eventname + " already defined for state " + statename); } else { statehandlers.Add(eventname, tdv); GenerateEventHandler(statename, tdv); } } } private void GenerateEventHandler(string statename, TokenDeclVar declFunc) { string eventname = declFunc.GetSimpleName(); TokenArgDecl argDecl = declFunc.argDecl; HeapLocals.Clear(); // Make sure event handler name is valid and that number and type of arguments is correct. // Apparently some scripts exist with fewer than correct number of args in their declaration // so allow for that. It is ok because the handlers are called with the arguments in an // object[] array, and we just won't access the missing argments in the vector. But the // specified types must match one of the prototypes in legalEventHandlers. TokenDeclVar protoDeclFunc = legalEventHandlers.FindExact(eventname, argDecl.types); if(protoDeclFunc == null) { ErrorMsg(declFunc, "unknown event handler " + eventname + argDecl.GetArgSig()); return; } // Output function header. // They just have the XMRInstAbstract pointer as the one argument. string functionName = statename + " " + eventname; _ilGen = new ScriptObjWriter(tokenScript, functionName, typeof(void), instanceTypeArg, instanceNameArg, objFileWriter); StartFunctionBody(declFunc); // Create a temp to hold XMRInstanceSuperType version of arg 0. instancePointer = ilGen.DeclareLocal(xmrInstSuperType, "__xmrinst"); ilGen.Emit(declFunc, OpCodes.Ldarg_0); ilGen.Emit(declFunc, OpCodes.Castclass, xmrInstSuperType); ilGen.Emit(declFunc, OpCodes.Stloc, instancePointer); // Output args as variable definitions and initialize each from __sw.ehArgs[]. // If the script writer goofed, the typecast will complain. int nArgs = argDecl.vars.Length; for(int i = 0; i < nArgs; i++) { // Say that the argument variable is going to be located in a local var. TokenDeclVar argVar = argDecl.vars[i]; TokenType argTokType = argVar.type; CompValuLocalVar local = new CompValuLocalVar(argTokType, argVar.name.val, this); argVar.location = local; // Copy from the ehArgs[i] element to the temp var. // Cast as needed, there is a lot of craziness like OpenMetaverse.Quaternion. local.PopPre(this, argVar.name); PushXMRInst(); // instance ilGen.Emit(declFunc, OpCodes.Ldfld, ehArgsFieldInfo); // instance.ehArgs (array of objects) ilGen.Emit(declFunc, OpCodes.Ldc_I4, i); // array index = i ilGen.Emit(declFunc, OpCodes.Ldelem, typeof(object)); // select the argument we want TokenType stkTokType = tokenTypeObj; // stack has a type 'object' on it now Type argSysType = argTokType.ToSysType(); // this is the type the script expects if(argSysType == typeof(double)) { // LSL_Float/double -> double ilGen.Emit(declFunc, OpCodes.Call, ehArgUnwrapFloat); stkTokType = tokenTypeFlt; // stack has a type 'double' on it now } if(argSysType == typeof(int)) { // LSL_Integer/int -> int ilGen.Emit(declFunc, OpCodes.Call, ehArgUnwrapInteger); stkTokType = tokenTypeInt; // stack has a type 'int' on it now } if(argSysType == typeof(LSL_List)) { // LSL_List -> LSL_List TypeCast.CastTopOfStack(this, argVar.name, stkTokType, argTokType, true); stkTokType = argTokType; // stack has a type 'LSL_List' on it now } if(argSysType == typeof(LSL_Rotation)) { // OpenMetaverse.Quaternion/LSL_Rotation -> LSL_Rotation ilGen.Emit(declFunc, OpCodes.Call, ehArgUnwrapRotation); stkTokType = tokenTypeRot; // stack has a type 'LSL_Rotation' on it now } if(argSysType == typeof(string)) { // LSL_Key/LSL_String/string -> string ilGen.Emit(declFunc, OpCodes.Call, ehArgUnwrapString); stkTokType = tokenTypeStr; // stack has a type 'string' on it now } if(argSysType == typeof(LSL_Vector)) { // OpenMetaverse.Vector3/LSL_Vector -> LSL_Vector ilGen.Emit(declFunc, OpCodes.Call, ehArgUnwrapVector); stkTokType = tokenTypeVec; // stack has a type 'LSL_Vector' on it now } local.PopPost(this, argVar.name, stkTokType); // pop stack type into argtype } // Output code for the statements and clean up. GenerateFuncBody(); } /** * @brief generate header for an arbitrary script-defined global function. * @param declFunc = function being defined */ private void GenerateMethodHeader(TokenDeclVar declFunc) { curDeclFunc = declFunc; // Make up array of all argument types as seen by the code generator. // We splice in XMRInstanceSuperType or XMRSDTypeClObj for the first // arg as the function itself is static, followed by script-visible // arg types. TokenArgDecl argDecl = declFunc.argDecl; int nArgs = argDecl.vars.Length; Type[] argTypes = new Type[nArgs + 1]; string[] argNames = new string[nArgs + 1]; if(IsSDTInstMethod()) { argTypes[0] = typeof(XMRSDTypeClObj); argNames[0] = "$sdtthis"; } else { argTypes[0] = xmrInstSuperType; argNames[0] = "$xmrthis"; } for(int i = 0; i < nArgs; i++) { argTypes[i + 1] = argDecl.vars[i].type.ToSysType(); argNames[i + 1] = argDecl.vars[i].name.val; } // Set up entrypoint. string objCodeName = declFunc.GetObjCodeName(); declFunc.ilGen = new ScriptObjWriter(tokenScript, objCodeName, declFunc.retType.ToSysType(), argTypes, argNames, objFileWriter); // This says how to generate a call to the function and to get a delegate. declFunc.location = new CompValuGlobalMeth(declFunc); curDeclFunc = null; } /** * @brief generate code for an arbitrary script-defined function. * @param name = name of the function * @param argDecl = argument declarations * @param body = function's code body */ private void GenerateMethodBody(TokenDeclVar declFunc) { HeapLocals.Clear(); // Set up code generator for the function's contents. _ilGen = declFunc.ilGen; StartFunctionBody(declFunc); // Create a temp to hold XMRInstanceSuperType version of arg 0. // For most functions, arg 0 is already XMRInstanceSuperType. // But for script-defined class instance methods, arg 0 holds // the XMRSDTypeClObj pointer and so we read the XMRInstAbstract // pointer from its XMRSDTypeClObj.xmrInst field then cast it to // XMRInstanceSuperType. if(IsSDTInstMethod()) { instancePointer = ilGen.DeclareLocal(xmrInstSuperType, "__xmrinst"); ilGen.Emit(declFunc, OpCodes.Ldarg_0); ilGen.Emit(declFunc, OpCodes.Ldfld, sdtXMRInstFieldInfo); ilGen.Emit(declFunc, OpCodes.Castclass, xmrInstSuperType); ilGen.Emit(declFunc, OpCodes.Stloc, instancePointer); } // Define location of all script-level arguments so script body can access them. // The argument indices need to have +1 added to them because XMRInstance or // XMRSDTypeClObj is spliced in at arg 0. TokenArgDecl argDecl = declFunc.argDecl; int nArgs = argDecl.vars.Length; for(int i = 0; i < nArgs; i++) { TokenDeclVar argVar = argDecl.vars[i]; argVar.location = new CompValuArg(argVar.type, i + 1); } // Output code for the statements and clean up. GenerateFuncBody(); } private void StartFunctionBody(TokenDeclVar declFunc) { // Start current function being processed. // Set 'mightGetHere' as the code at the top is always executed. instancePointer = null; mightGetHere = true; curBreakTarg = null; curContTarg = null; curDeclFunc = declFunc; // Start generating code. ((ScriptObjWriter)ilGen).BegMethod(); } /** * @brief Define function for a script-defined type's .$new() method. * See GenerateStmtNewobj() for more info. */ private TokenDeclVar DefineNewobjFunc(TokenDeclVar ctorDeclFunc) { // Set up 'static classname $new(params-same-as-ctor) { }'. TokenDeclVar newobjDeclFunc = new TokenDeclVar(ctorDeclFunc, null, tokenScript); newobjDeclFunc.name = new TokenName(newobjDeclFunc, "$new"); newobjDeclFunc.retType = ctorDeclFunc.sdtClass.MakeRefToken(newobjDeclFunc); newobjDeclFunc.argDecl = ctorDeclFunc.argDecl; newobjDeclFunc.sdtClass = ctorDeclFunc.sdtClass; newobjDeclFunc.sdtFlags = ScriptReduce.SDT_STATIC | ctorDeclFunc.sdtFlags; // Declare local variable named '$objptr' in a frame just under // what the '$new(...)' function's arguments are declared in. TokenDeclVar objptrVar = new TokenDeclVar(newobjDeclFunc, newobjDeclFunc, tokenScript); objptrVar.type = newobjDeclFunc.retType; objptrVar.name = new TokenName(newobjDeclFunc, "$objptr"); VarDict newFrame = new VarDict(false); newFrame.outerVarDict = ctorDeclFunc.argDecl.varDict; newFrame.AddEntry(objptrVar); // Set up '$objptr.$ctor' TokenLValName objptrLValName = new TokenLValName(objptrVar.name, newFrame); // ref a var by giving its name TokenLValIField objptrDotCtor = new TokenLValIField(newobjDeclFunc); // an instance member reference objptrDotCtor.baseRVal = objptrLValName; // '$objptr' objptrDotCtor.fieldName = ctorDeclFunc.name; // '.' '$ctor' // Set up '$objptr.$ctor(arglist)' call for use in the '$new(...)' body. // Copy the arglist from the constructor declaration so triviality // processing will pick the correct overloaded constructor. TokenRValCall callCtorRVal = new TokenRValCall(newobjDeclFunc); // doing a call of some sort callCtorRVal.meth = objptrDotCtor; // calling $objptr.$ctor() TokenDeclVar[] argList = newobjDeclFunc.argDecl.vars; // get args $new() was declared with callCtorRVal.nArgs = argList.Length; // ...that is nArgs we are passing to $objptr.$ctor() for(int i = argList.Length; --i >= 0;) { TokenDeclVar arg = argList[i]; // find out about one of the args TokenLValName argLValName = new TokenLValName(arg.name, ctorDeclFunc.argDecl.varDict); // pass arg of that name to $objptr.$ctor() argLValName.nextToken = callCtorRVal.args; // link to list of args passed to $objptr.$ctor() callCtorRVal.args = argLValName; } // Set up a funky call to the constructor for the code body. // This will let code generator know there is some craziness. // See GenerateStmtNewobj(). // // This is in essence: // { // classname $objptr = newobj (classname); // $objptr.$ctor (...); // return $objptr; // } TokenStmtNewobj newobjStmtBody = new TokenStmtNewobj(ctorDeclFunc); newobjStmtBody.objptrVar = objptrVar; newobjStmtBody.rValCall = callCtorRVal; TokenStmtBlock newobjBody = new TokenStmtBlock(ctorDeclFunc); newobjBody.statements = newobjStmtBody; // Link that code as the body of the function. newobjDeclFunc.body = newobjBody; // Say the function calls '$objptr.$ctor(arglist)' so we will inherit ctor's triviality. newobjDeclFunc.unknownTrivialityCalls.AddLast(callCtorRVal); return newobjDeclFunc; } private class TokenStmtNewobj: TokenStmt { public TokenDeclVar objptrVar; public TokenRValCall rValCall; public TokenStmtNewobj(Token original) : base(original) { } } /** * @brief Output function body (either event handler or script-defined method). */ private void GenerateFuncBody() { // We want to know if the function's code is trivial, ie, // if it doesn't have anything that might be an infinite // loop and that is doesn't call anything that might have // an infinite loop. If it is, we don't need any CheckRun() // stuff or any of the frame save/restore stuff. bool isTrivial = curDeclFunc.IsFuncTrivial(this); // Clear list of all call labels. // A call label is inserted just before every call that can possibly // call CheckRun(), including any direct calls to CheckRun(). // Then, when restoring stack, we can just switch to this label to // resume at the correct spot. actCallLabels.Clear(); allCallLabels.Clear(); openCallLabel = null; // Alloc stack space for local vars. int stackframesize = AllocLocalVarStackSpace(); // Include argument variables in stack space for this frame. foreach(TokenType tokType in curDeclFunc.argDecl.types) { stackframesize += LocalVarStackSize(tokType); } // Any return statements inside function body jump to this label // after putting return value in __retval. retLabel = ilGen.DefineLabel("__retlbl"); retValue = null; if(!(curDeclFunc.retType is TokenTypeVoid)) { retValue = ilGen.DeclareLocal(curDeclFunc.retType.ToSysType(), "__retval"); } // Output: // int __mainCallNo = -1; // instance.m_StackLeft -= stackframesize; // try { // if (instance.callMode != CallMode_NORMAL) goto __cmRestore; actCallNo = null; ScriptMyLabel cmRestore = null; if(!isTrivial) { actCallNo = ilGen.DeclareLocal(typeof(int), "__mainCallNo"); SetCallNo(curDeclFunc, actCallNo, -1); PushXMRInst(); ilGen.Emit(curDeclFunc, OpCodes.Dup); ilGen.Emit(curDeclFunc, OpCodes.Ldfld, stackLeftFieldInfo); ilGen.Emit(curDeclFunc, OpCodes.Ldc_I4, stackframesize); ilGen.Emit(curDeclFunc, OpCodes.Sub); ilGen.Emit(curDeclFunc, OpCodes.Stfld, stackLeftFieldInfo); cmRestore = ilGen.DefineLabel("__cmRestore"); ilGen.BeginExceptionBlock(); PushXMRInst(); ilGen.Emit(curDeclFunc, OpCodes.Ldfld, ScriptCodeGen.callModeFieldInfo); ilGen.Emit(curDeclFunc, OpCodes.Ldc_I4, XMRInstAbstract.CallMode_NORMAL); ilGen.Emit(curDeclFunc, OpCodes.Bne_Un, cmRestore); } // Splice in the code optimizer for the body of the function. ScriptCollector collector = new ScriptCollector((ScriptObjWriter)ilGen); _ilGen = collector; // If this is the default state_entry() handler, output code to set all global // variables to their initial values. Note that every script must have a // default state_entry() handler, we provide one if the script doesn't explicitly // define one. string methname = ilGen.methName; if(methname == "default state_entry") { // if (!doGblInit) goto skipGblInit; ScriptMyLabel skipGblInitLabel = ilGen.DefineLabel("__skipGblInit"); PushXMRInst(); // instance ilGen.Emit(curDeclFunc, OpCodes.Ldfld, doGblInitFieldInfo); // instance.doGblInit ilGen.Emit(curDeclFunc, OpCodes.Brfalse, skipGblInitLabel); // $globalvarinit(); TokenDeclVar gviFunc = tokenScript.globalVarInit; if(gviFunc.body.statements != null) { gviFunc.location.CallPre(this, gviFunc); gviFunc.location.CallPost(this, gviFunc); } // various $staticfieldinit(); foreach(TokenDeclSDType sdType in tokenScript.sdSrcTypesValues) { if(sdType is TokenDeclSDTypeClass) { TokenDeclVar sfiFunc = ((TokenDeclSDTypeClass)sdType).staticFieldInit; if((sfiFunc != null) && (sfiFunc.body.statements != null)) { sfiFunc.location.CallPre(this, sfiFunc); sfiFunc.location.CallPost(this, sfiFunc); } } } // doGblInit = 0; PushXMRInst(); // instance ilGen.Emit(curDeclFunc, OpCodes.Ldc_I4_0); ilGen.Emit(curDeclFunc, OpCodes.Stfld, doGblInitFieldInfo); // instance.doGblInit //skipGblInit: ilGen.MarkLabel(skipGblInitLabel); } // If this is a script-defined type constructor, call the base constructor and call // this class's $instfieldinit() method to initialize instance fields. if((curDeclFunc.sdtClass != null) && curDeclFunc.funcNameSig.val.StartsWith("$ctor(")) { if(curDeclFunc.baseCtorCall != null) { GenerateFromRValCall(curDeclFunc.baseCtorCall); } TokenDeclVar ifiFunc = ((TokenDeclSDTypeClass)curDeclFunc.sdtClass).instFieldInit; if(ifiFunc.body.statements != null) { CompValu thisCompValu = new CompValuArg(ifiFunc.sdtClass.MakeRefToken(ifiFunc), 0); CompValu ifiFuncLocn = new CompValuInstMember(ifiFunc, thisCompValu, true); ifiFuncLocn.CallPre(this, ifiFunc); ifiFuncLocn.CallPost(this, ifiFunc); } } // See if time to suspend in case they are doing a loop with recursion. if(!isTrivial) EmitCallCheckRun(curDeclFunc, true); // Output code body. GenerateStmtBlock(curDeclFunc.body); // If code falls through to this point, means they are missing // a return statement. And that is legal only if the function // returns 'void'. if(mightGetHere) { if(!(curDeclFunc.retType is TokenTypeVoid)) { ErrorMsg(curDeclFunc.body, "missing final return statement"); } ilGen.Emit(curDeclFunc, OpCodes.Leave, retLabel); } // End of the code to be optimized. // Do optimizations then write it all out to object file. // After this, all code gets written directly to object file. // Optimization must be completed before we scan the allCallLabels // list below to look for active locals and temps. collector.Optimize(); _ilGen = collector.WriteOutAll(); collector = null; List activeTemps = null; if (!isTrivial) { // Build list of locals and temps active at all the call labels. activeTemps = new List(); foreach (CallLabel cl in allCallLabels) { foreach (ScriptMyLocal lcl in cl.callLabel.whereAmI.localsReadBeforeWritten) { if (!activeTemps.Contains(lcl)) { activeTemps.Add(lcl); } } } // Output code to restore the args, locals and temps then jump to // the call label that we were interrupted at. ilGen.MarkLabel(cmRestore); GenerateFrameRestoreCode(activeTemps); } // Output epilog that saves stack frame state if CallMode_SAVE. // // finally { // instance.m_StackLeft += stackframesize; // if (instance.callMode != CallMode_SAVE) goto __endFin; // GenerateFrameCaptureCode(); // __endFin: // } ScriptMyLabel endFin = null; if(!isTrivial) { ilGen.BeginFinallyBlock(); PushXMRInst(); ilGen.Emit(curDeclFunc, OpCodes.Dup); ilGen.Emit(curDeclFunc, OpCodes.Ldfld, stackLeftFieldInfo); ilGen.Emit(curDeclFunc, OpCodes.Ldc_I4, stackframesize); ilGen.Emit(curDeclFunc, OpCodes.Add); ilGen.Emit(curDeclFunc, OpCodes.Stfld, stackLeftFieldInfo); endFin = ilGen.DefineLabel("__endFin"); PushXMRInst(); ilGen.Emit(curDeclFunc, OpCodes.Ldfld, callModeFieldInfo); ilGen.Emit(curDeclFunc, OpCodes.Ldc_I4, XMRInstAbstract.CallMode_SAVE); ilGen.Emit(curDeclFunc, OpCodes.Bne_Un, endFin); GenerateFrameCaptureCode(activeTemps); ilGen.MarkLabel(endFin); ilGen.Emit(curDeclFunc, OpCodes.Endfinally); ilGen.EndExceptionBlock(); } // Output the 'real' return opcode. // push return value ilGen.MarkLabel(retLabel); if (!(curDeclFunc.retType is TokenTypeVoid)) { ilGen.Emit(curDeclFunc, OpCodes.Ldloc, retValue); } // pseudo free memory usage foreach (ScriptMyLocal sml in HeapLocals) { Type t = sml.type; if (t == typeof(HeapTrackerList)) { ilGen.Emit(curDeclFunc, OpCodes.Ldloc, sml); HeapTrackerList.GenFree(curDeclFunc, ilGen); } else if (t == typeof(HeapTrackerString)) { ilGen.Emit(curDeclFunc, OpCodes.Ldloc, sml); HeapTrackerString.GenFree(curDeclFunc, ilGen); } else if (t == typeof(HeapTrackerObject)) { ilGen.Emit(curDeclFunc, OpCodes.Ldloc, sml); HeapTrackerObject.GenFree(curDeclFunc, ilGen); } } ilGen.Emit(curDeclFunc, OpCodes.Ret); retLabel = null; retValue = null; // No more instructions for this method. ((ScriptObjWriter)ilGen).EndMethod(); _ilGen = null; // Not generating function code any more. curBreakTarg = null; curContTarg = null; curDeclFunc = null; } /** * @brief Allocate stack space for all local variables, regardless of * which { } statement block they are actually defined in. * @returns approximate stack frame size */ private int AllocLocalVarStackSpace() { int stackframesize = 64; // RIP, RBX, RBP, R12..R15, one extra foreach(TokenDeclVar localVar in curDeclFunc.localVars) { // Skip all 'constant' vars as they were handled by the reducer. if(localVar.constant) continue; // Get a stack location for the local variable. localVar.location = new CompValuLocalVar(localVar.type, localVar.name.val, this); // Stack size for the local variable. stackframesize += LocalVarStackSize(localVar.type); } return stackframesize; } private static int LocalVarStackSize(TokenType tokType) { Type sysType = tokType.ToSysType(); return sysType.IsValueType ? System.Runtime.InteropServices.Marshal.SizeOf(sysType) : 8; } /** * @brief Generate code to write all arguments and locals to the capture stack frame. * This includes temp variables. * We only need to save what is active at the point of callLabels through because * those are the only points we will jump to on restore. This saves us from saving * all the little temp vars we create. * @param activeTemps = list of locals and temps that we care about, ie, which * ones get restored by GenerateFrameRestoreCode(). */ private void GenerateFrameCaptureCode(List activeTemps) { // Compute total number of slots we need to save stuff. // Assume we need to save all call arguments. int nSaves = curDeclFunc.argDecl.vars.Length + activeTemps.Count; // Output code to allocate a stack frame object with an object array. // This also pushes the stack frame object on the instance.stackFrames list. // It returns a pointer to the object array it allocated. PushXMRInst(); ilGen.Emit(curDeclFunc, OpCodes.Ldstr, ilGen.methName); GetCallNo(curDeclFunc, actCallNo); ilGen.Emit(curDeclFunc, OpCodes.Ldc_I4, nSaves); ilGen.Emit(curDeclFunc, OpCodes.Call, captureStackFrameMethodInfo); // Copy arg values to object array, boxing as needed. int i = 0; foreach(TokenDeclVar argVar in curDeclFunc.argDecl.varDict) { ilGen.Emit(curDeclFunc, OpCodes.Dup); ilGen.Emit(curDeclFunc, OpCodes.Ldc_I4, i); argVar.location.PushVal(this, argVar.name, tokenTypeObj); ilGen.Emit(curDeclFunc, OpCodes.Stelem_Ref); i++; } // Copy local and temp values to object array, boxing as needed. foreach(ScriptMyLocal lcl in activeTemps) { ilGen.Emit(curDeclFunc, OpCodes.Dup); ilGen.Emit(curDeclFunc, OpCodes.Ldc_I4, i++); ilGen.Emit(curDeclFunc, OpCodes.Ldloc, lcl); Type t = lcl.type; if(t == typeof(HeapTrackerList)) { t = HeapTrackerList.GenPush(curDeclFunc, ilGen); } if(t == typeof(HeapTrackerObject)) { t = HeapTrackerObject.GenPush(curDeclFunc, ilGen); } if(t == typeof(HeapTrackerString)) { t = HeapTrackerString.GenPush(curDeclFunc, ilGen); } if(t.IsValueType) { ilGen.Emit(curDeclFunc, OpCodes.Box, t); } ilGen.Emit(curDeclFunc, OpCodes.Stelem_Ref); } ilGen.Emit(curDeclFunc, OpCodes.Pop); } /** * @brief Generate code to restore all arguments and locals from the restore stack frame. * This includes temp variables. */ private void GenerateFrameRestoreCode(List activeTemps) { ScriptMyLocal objArray = ilGen.DeclareLocal(typeof(object[]), "__restObjArray"); // Output code to pop stack frame from instance.stackFrames. // It returns a pointer to the object array that contains values to be restored. PushXMRInst(); ilGen.Emit(curDeclFunc, OpCodes.Ldstr, ilGen.methName); ilGen.Emit(curDeclFunc, OpCodes.Ldloca, actCallNo); // __mainCallNo ilGen.Emit(curDeclFunc, OpCodes.Call, restoreStackFrameMethodInfo); ilGen.Emit(curDeclFunc, OpCodes.Stloc, objArray); // Restore argument values from object array, unboxing as needed. // Although the caller has restored them to what it called us with, it's possible that this // function has modified them since, so we need to do our own restore. int i = 0; foreach(TokenDeclVar argVar in curDeclFunc.argDecl.varDict) { CompValu argLoc = argVar.location; argLoc.PopPre(this, argVar.name); ilGen.Emit(curDeclFunc, OpCodes.Ldloc, objArray); ilGen.Emit(curDeclFunc, OpCodes.Ldc_I4, i); ilGen.Emit(curDeclFunc, OpCodes.Ldelem_Ref); TypeCast.CastTopOfStack(this, argVar.name, tokenTypeObj, argLoc.type, true); argLoc.PopPost(this, argVar.name); i++; } // Restore local and temp values from object array, unboxing as needed. foreach(ScriptMyLocal lcl in activeTemps) { Type t = lcl.type; Type u = t; if(t == typeof(HeapTrackerList)) u = typeof(LSL_List); if(t == typeof(HeapTrackerObject)) u = typeof(object); if(t == typeof(HeapTrackerString)) u = typeof(string); if(u != t) { ilGen.Emit(curDeclFunc, OpCodes.Ldloc, lcl); } ilGen.Emit(curDeclFunc, OpCodes.Ldloc, objArray); ilGen.Emit(curDeclFunc, OpCodes.Ldc_I4, i++); ilGen.Emit(curDeclFunc, OpCodes.Ldelem_Ref); if(u.IsValueType) { ilGen.Emit(curDeclFunc, OpCodes.Unbox_Any, u); } else if(u != typeof(object)) { ilGen.Emit(curDeclFunc, OpCodes.Castclass, u); } if(u != t) { if(t == typeof(HeapTrackerList)) HeapTrackerList.GenRestore(curDeclFunc, ilGen); if(t == typeof(HeapTrackerObject)) HeapTrackerObject.GenRestore(curDeclFunc, ilGen); if(t == typeof(HeapTrackerString)) HeapTrackerString.GenRestore(curDeclFunc, ilGen); } else { ilGen.Emit(curDeclFunc, OpCodes.Stloc, lcl); } } OutputCallNoSwitchStmt(); } /** * @brief Output a switch statement with a case for each possible * value of whatever callNo is currently active, either * __mainCallNo or one of the try/catch/finally's callNos. * * switch (callNo) { * case 0: goto __call_0; * case 1: goto __call_1; * ... * } * throw new ScriptBadCallNoException (callNo); */ private void OutputCallNoSwitchStmt() { ScriptMyLabel[] callLabels = new ScriptMyLabel[actCallLabels.Count]; foreach(CallLabel cl in actCallLabels) { callLabels[cl.index] = cl.callLabel; } GetCallNo(curDeclFunc, actCallNo); ilGen.Emit(curDeclFunc, OpCodes.Switch, callLabels); GetCallNo(curDeclFunc, actCallNo); ilGen.Emit(curDeclFunc, OpCodes.Newobj, scriptBadCallNoExceptionConstructorInfo); ilGen.Emit(curDeclFunc, OpCodes.Throw); } /** * @brief There is one of these per call that can possibly call CheckRun(), * including direct calls to CheckRun(). * They mark points that the stack capture/restore code will save & restore to. * All object-code level local vars active at the call label's point will * be saved & restored. * * callNo = 5; * __call_5: * push call arguments from temps * call SomethingThatCallsCheckRun() * * If SomethingThatCallsCheckRun() actually calls CheckRun(), our restore code * will restore our args, locals & temps, then jump to __call_5, which will then * call SomethingThatCallsCheckRun() again, which will restore its stuff likewise. * When eventually the actual CheckRun() call is restored, it will turn off restore * mode (by changing callMode from CallMode_RESTORE to CallMode_NORMAL) and return, * allowing the code to run normally from that point. */ public class CallLabel { public int index; // sequential integer, starting at 0, within actCallLabels // - used for the switch statement public ScriptMyLabel callLabel; // the actual label token public CallLabel(ScriptCodeGen scg, Token errorAt) { if(scg.openCallLabel != null) throw new Exception("call label already open"); if(!scg.curDeclFunc.IsFuncTrivial(scg)) { this.index = scg.actCallLabels.Count; string name = "__call_" + index + "_" + scg.allCallLabels.Count; // Make sure eval stack is empty because the frame capture/restore // code expects such (restore switch stmt has an empty stack). int depth = ((ScriptCollector)scg.ilGen).stackDepth.Count; if(depth > 0) { // maybe need to call Trivialize() throw new Exception("call label stack depth " + depth + " at " + errorAt.SrcLoc); } // Eval stack is empty so the restore code can handle it. this.index = scg.actCallLabels.Count; scg.actCallLabels.AddLast(this); scg.allCallLabels.AddLast(this); this.callLabel = scg.ilGen.DefineLabel(name); scg.SetCallNo(errorAt, scg.actCallNo, this.index); scg.ilGen.MarkLabel(this.callLabel); } scg.openCallLabel = this; } }; /** * @brief generate code for an arbitrary statement. */ private void GenerateStmt(TokenStmt stmt) { errorMessageToken = stmt; if(stmt is TokenDeclVar) { GenerateDeclVar((TokenDeclVar)stmt); return; } if(stmt is TokenStmtBlock) { GenerateStmtBlock((TokenStmtBlock)stmt); return; } if(stmt is TokenStmtBreak) { GenerateStmtBreak((TokenStmtBreak)stmt); return; } if(stmt is TokenStmtCont) { GenerateStmtCont((TokenStmtCont)stmt); return; } if(stmt is TokenStmtDo) { GenerateStmtDo((TokenStmtDo)stmt); return; } if(stmt is TokenStmtFor) { GenerateStmtFor((TokenStmtFor)stmt); return; } if(stmt is TokenStmtForEach) { GenerateStmtForEach((TokenStmtForEach)stmt); return; } if(stmt is TokenStmtIf) { GenerateStmtIf((TokenStmtIf)stmt); return; } if(stmt is TokenStmtJump) { GenerateStmtJump((TokenStmtJump)stmt); return; } if(stmt is TokenStmtLabel) { GenerateStmtLabel((TokenStmtLabel)stmt); return; } if(stmt is TokenStmtNewobj) { GenerateStmtNewobj((TokenStmtNewobj)stmt); return; } if(stmt is TokenStmtNull) { return; } if(stmt is TokenStmtRet) { GenerateStmtRet((TokenStmtRet)stmt); return; } if(stmt is TokenStmtRVal) { GenerateStmtRVal((TokenStmtRVal)stmt); return; } if(stmt is TokenStmtState) { GenerateStmtState((TokenStmtState)stmt); return; } if(stmt is TokenStmtSwitch) { GenerateStmtSwitch((TokenStmtSwitch)stmt); return; } if(stmt is TokenStmtThrow) { GenerateStmtThrow((TokenStmtThrow)stmt); return; } if(stmt is TokenStmtTry) { GenerateStmtTry((TokenStmtTry)stmt); return; } if(stmt is TokenStmtVarIniDef) { GenerateStmtVarIniDef((TokenStmtVarIniDef)stmt); return; } if(stmt is TokenStmtWhile) { GenerateStmtWhile((TokenStmtWhile)stmt); return; } throw new Exception("unknown TokenStmt type " + stmt.GetType().ToString()); } /** * @brief generate statement block (ie, with braces) */ private void GenerateStmtBlock(TokenStmtBlock stmtBlock) { if(!mightGetHere) return; // Push new current statement block pointer for anyone who cares. TokenStmtBlock oldStmtBlock = curStmtBlock; curStmtBlock = stmtBlock; // Output the statements that make up the block. for(Token t = stmtBlock.statements; t != null; t = t.nextToken) { GenerateStmt((TokenStmt)t); } // Pop the current statement block. curStmtBlock = oldStmtBlock; } /** * @brief output code for a 'break' statement */ private void GenerateStmtBreak(TokenStmtBreak breakStmt) { if(!mightGetHere) return; // Make sure we are in a breakable situation. if(curBreakTarg == null) { ErrorMsg(breakStmt, "not in a breakable situation"); return; } // Tell anyone who cares that the break target was actually used. curBreakTarg.used = true; // Output the instructions. EmitJumpCode(curBreakTarg.label, curBreakTarg.block, breakStmt); } /** * @brief output code for a 'continue' statement */ private void GenerateStmtCont(TokenStmtCont contStmt) { if(!mightGetHere) return; // Make sure we are in a contable situation. if(curContTarg == null) { ErrorMsg(contStmt, "not in a continueable situation"); return; } // Tell anyone who cares that the continue target was actually used. curContTarg.used = true; // Output the instructions. EmitJumpCode(curContTarg.label, curContTarg.block, contStmt); } /** * @brief output code for a 'do' statement */ private void GenerateStmtDo(TokenStmtDo doStmt) { if(!mightGetHere) return; BreakContTarg oldBreakTarg = curBreakTarg; BreakContTarg oldContTarg = curContTarg; ScriptMyLabel loopLabel = ilGen.DefineLabel("doloop_" + doStmt.Unique); curBreakTarg = new BreakContTarg(this, "dobreak_" + doStmt.Unique); curContTarg = new BreakContTarg(this, "docont_" + doStmt.Unique); ilGen.MarkLabel(loopLabel); GenerateStmt(doStmt.bodyStmt); if(curContTarg.used) { ilGen.MarkLabel(curContTarg.label); mightGetHere = true; } if(mightGetHere) { EmitCallCheckRun(doStmt, false); CompValu testRVal = GenerateFromRVal(doStmt.testRVal); if(IsConstBoolExprTrue(testRVal)) { // Unconditional looping, unconditional branch and // say we never fall through to next statement. ilGen.Emit(doStmt, OpCodes.Br, loopLabel); mightGetHere = false; } else { // Conditional looping, test and brach back to top of loop. testRVal.PushVal(this, doStmt.testRVal, tokenTypeBool); ilGen.Emit(doStmt, OpCodes.Brtrue, loopLabel); } } // If 'break' statement was used, output target label. // And assume that since a 'break' statement was used, it's possible for the code to get here. if(curBreakTarg.used) { ilGen.MarkLabel(curBreakTarg.label); mightGetHere = true; } curBreakTarg = oldBreakTarg; curContTarg = oldContTarg; } /** * @brief output code for a 'for' statement */ private void GenerateStmtFor(TokenStmtFor forStmt) { if(!mightGetHere) return; BreakContTarg oldBreakTarg = curBreakTarg; BreakContTarg oldContTarg = curContTarg; ScriptMyLabel loopLabel = ilGen.DefineLabel("forloop_" + forStmt.Unique); curBreakTarg = new BreakContTarg(this, "forbreak_" + forStmt.Unique); curContTarg = new BreakContTarg(this, "forcont_" + forStmt.Unique); if(forStmt.initStmt != null) { GenerateStmt(forStmt.initStmt); } ilGen.MarkLabel(loopLabel); // See if we have a test expression that is other than a constant TRUE. // If so, test it and conditionally branch to end if false. if(forStmt.testRVal != null) { CompValu testRVal = GenerateFromRVal(forStmt.testRVal); if(!IsConstBoolExprTrue(testRVal)) { testRVal.PushVal(this, forStmt.testRVal, tokenTypeBool); ilGen.Emit(forStmt, OpCodes.Brfalse, curBreakTarg.label); curBreakTarg.used = true; } } // Output loop body. GenerateStmt(forStmt.bodyStmt); // Here's where a 'continue' statement jumps to. if(curContTarg.used) { ilGen.MarkLabel(curContTarg.label); mightGetHere = true; } if(mightGetHere) { // After checking for excessive CPU time, output increment statement, if any. EmitCallCheckRun(forStmt, false); if(forStmt.incrRVal != null) { GenerateFromRVal(forStmt.incrRVal); } // Unconditional branch back to beginning of loop. ilGen.Emit(forStmt, OpCodes.Br, loopLabel); } // If test needs label, output label for it to jump to. // Otherwise, clear mightGetHere as we know loop never // falls out the bottom. mightGetHere = curBreakTarg.used; if(mightGetHere) { ilGen.MarkLabel(curBreakTarg.label); } curBreakTarg = oldBreakTarg; curContTarg = oldContTarg; } private void GenerateStmtForEach(TokenStmtForEach forEachStmt) { if(!mightGetHere) return; BreakContTarg oldBreakTarg = curBreakTarg; BreakContTarg oldContTarg = curContTarg; CompValu keyLVal = null; CompValu valLVal = null; CompValu arrayRVal = GenerateFromRVal(forEachStmt.arrayRVal); if(forEachStmt.keyLVal != null) { keyLVal = GenerateFromLVal(forEachStmt.keyLVal); if(!(keyLVal.type is TokenTypeObject)) { ErrorMsg(forEachStmt.arrayRVal, "must be object"); } } if(forEachStmt.valLVal != null) { valLVal = GenerateFromLVal(forEachStmt.valLVal); if(!(valLVal.type is TokenTypeObject)) { ErrorMsg(forEachStmt.arrayRVal, "must be object"); } } if(!(arrayRVal.type is TokenTypeArray)) { ErrorMsg(forEachStmt.arrayRVal, "must be an array"); } curBreakTarg = new BreakContTarg(this, "foreachbreak_" + forEachStmt.Unique); curContTarg = new BreakContTarg(this, "foreachcont_" + forEachStmt.Unique); CompValuTemp indexVar = new CompValuTemp(new TokenTypeInt(forEachStmt), this); ScriptMyLabel loopLabel = ilGen.DefineLabel("foreachloop_" + forEachStmt.Unique); // indexVar = 0 ilGen.Emit(forEachStmt, OpCodes.Ldc_I4_0); indexVar.Pop(this, forEachStmt); ilGen.MarkLabel(loopLabel); // key = array.__pub_index (indexVar); // if (key == null) goto curBreakTarg; if(keyLVal != null) { keyLVal.PopPre(this, forEachStmt.keyLVal); arrayRVal.PushVal(this, forEachStmt.arrayRVal); indexVar.PushVal(this, forEachStmt); ilGen.Emit(forEachStmt, OpCodes.Call, xmrArrPubIndexMethod); keyLVal.PopPost(this, forEachStmt.keyLVal); keyLVal.PushVal(this, forEachStmt.keyLVal); ilGen.Emit(forEachStmt, OpCodes.Brfalse, curBreakTarg.label); curBreakTarg.used = true; } // val = array._pub_value (indexVar); // if (val == null) goto curBreakTarg; if(valLVal != null) { valLVal.PopPre(this, forEachStmt.valLVal); arrayRVal.PushVal(this, forEachStmt.arrayRVal); indexVar.PushVal(this, forEachStmt); ilGen.Emit(forEachStmt, OpCodes.Call, xmrArrPubValueMethod); valLVal.PopPost(this, forEachStmt.valLVal); if(keyLVal == null) { valLVal.PushVal(this, forEachStmt.valLVal); ilGen.Emit(forEachStmt, OpCodes.Brfalse, curBreakTarg.label); curBreakTarg.used = true; } } // indexVar ++; indexVar.PushVal(this, forEachStmt); ilGen.Emit(forEachStmt, OpCodes.Ldc_I4_1); ilGen.Emit(forEachStmt, OpCodes.Add); indexVar.Pop(this, forEachStmt); // body statement GenerateStmt(forEachStmt.bodyStmt); // continue label if(curContTarg.used) { ilGen.MarkLabel(curContTarg.label); mightGetHere = true; } // call CheckRun() if(mightGetHere) { EmitCallCheckRun(forEachStmt, false); ilGen.Emit(forEachStmt, OpCodes.Br, loopLabel); } // break label ilGen.MarkLabel(curBreakTarg.label); mightGetHere = true; curBreakTarg = oldBreakTarg; curContTarg = oldContTarg; } /** * @brief output code for an 'if' statement * Braces are necessary because what may be one statement for trueStmt or elseStmt in * the script may translate to more than one statement in the resultant C# code. */ private void GenerateStmtIf(TokenStmtIf ifStmt) { if(!mightGetHere) return; bool constVal; // Test condition and see if constant test expression. CompValu testRVal = GenerateFromRVal(ifStmt.testRVal); if(IsConstBoolExpr(testRVal, out constVal)) { // Constant, output just either the true or else part. if(constVal) { GenerateStmt(ifStmt.trueStmt); } else if(ifStmt.elseStmt != null) { GenerateStmt(ifStmt.elseStmt); } } else if(ifStmt.elseStmt == null) { // This is an 'if' statement without an 'else' clause. testRVal.PushVal(this, ifStmt.testRVal, tokenTypeBool); ScriptMyLabel doneLabel = ilGen.DefineLabel("ifdone_" + ifStmt.Unique); ilGen.Emit(ifStmt, OpCodes.Brfalse, doneLabel); // brfalse doneLabel GenerateStmt(ifStmt.trueStmt); // generate true body code ilGen.MarkLabel(doneLabel); mightGetHere = true; // there's always a possibility of getting here } else { // This is an 'if' statement with an 'else' clause. testRVal.PushVal(this, ifStmt.testRVal, tokenTypeBool); ScriptMyLabel elseLabel = ilGen.DefineLabel("ifelse_" + ifStmt.Unique); ilGen.Emit(ifStmt, OpCodes.Brfalse, elseLabel); // brfalse elseLabel GenerateStmt(ifStmt.trueStmt); // generate true body code bool trueMightGetHere = mightGetHere; // save whether or not true falls through ScriptMyLabel doneLabel = ilGen.DefineLabel("ifdone_" + ifStmt.Unique); ilGen.Emit(ifStmt, OpCodes.Br, doneLabel); // branch to done ilGen.MarkLabel(elseLabel); // beginning of else code mightGetHere = true; // the top of the else might be executed GenerateStmt(ifStmt.elseStmt); // output else code ilGen.MarkLabel(doneLabel); // where end of true clause code branches to mightGetHere |= trueMightGetHere; // gets this far if either true or else falls through } } /** * @brief output code for a 'jump' statement */ private void GenerateStmtJump(TokenStmtJump jumpStmt) { if(!mightGetHere) return; // Make sure the target label is defined somewhere in the function. TokenStmtLabel stmtLabel; if(!curDeclFunc.labels.TryGetValue(jumpStmt.label.val, out stmtLabel)) { ErrorMsg(jumpStmt, "undefined label " + jumpStmt.label.val); return; } if(!stmtLabel.labelTagged) { stmtLabel.labelStruct = ilGen.DefineLabel("jump_" + stmtLabel.name.val); stmtLabel.labelTagged = true; } // Emit instructions to do the jump. EmitJumpCode(stmtLabel.labelStruct, stmtLabel.block, jumpStmt); } /** * @brief Emit code to jump to a label * @param target = label being jumped to * @param targetsBlock = { ... } the label is defined in */ private void EmitJumpCode(ScriptMyLabel target, TokenStmtBlock targetsBlock, Token errorAt) { // Jumps never fall through. mightGetHere = false; // Find which block the target label is in. Must be in this or an outer block, // no laterals allowed. And if we exit a try/catch block, use Leave instead of Br. // // jump lateral; // { // @lateral; // } bool useLeave = false; TokenStmtBlock stmtBlock; Stack finallyBlocksCalled = new Stack(); for(stmtBlock = curStmtBlock; stmtBlock != targetsBlock; stmtBlock = stmtBlock.outerStmtBlock) { if(stmtBlock == null) { ErrorMsg(errorAt, "no lateral jumps allowed"); return; } if(stmtBlock.isFinally) { ErrorMsg(errorAt, "cannot jump out of finally"); return; } if(stmtBlock.isTry || stmtBlock.isCatch) useLeave = true; if((stmtBlock.tryStmt != null) && (stmtBlock.tryStmt.finallyStmt != null)) { finallyBlocksCalled.Push(stmtBlock.tryStmt); } } // If popping through more than one finally block, we have to break it down for the stack // capture and restore code, one finally block at a time. // // try { // try { // try { // jump exit; // } finally { // llOwnerSay ("exiting inner"); // } // } finally { // llOwnerSay ("exiting middle"); // } // } finally { // llOwnerSay ("exiting outer"); // } // @exit; // // try { // try { // try { // jump intr2_exit; <<< gets its own tryNo call label so inner try knows where to restore to // } finally { // llOwnerSay ("exiting inner"); // } // jump outtry2; // @intr2_exit; jump intr1_exit; <<< gets its own tryNo call label so middle try knows where to restore to // @outtry2; // } finally { // llOwnerSay ("exiting middle"); // } // jump outtry1; // @intr1_exit: jump exit; <<< gets its own tryNo call label so outer try knows where to restore to // @outtry1; // } finally { // llOwnerSay ("exiting outer"); // } // @exit; int level = 0; while(finallyBlocksCalled.Count > 1) { TokenStmtTry finallyBlock = finallyBlocksCalled.Pop(); string intername = "intr" + (++level) + "_" + target.name; IntermediateLeave iLeave; if(!finallyBlock.iLeaves.TryGetValue(intername, out iLeave)) { iLeave = new IntermediateLeave(); iLeave.jumpIntoLabel = ilGen.DefineLabel(intername); iLeave.jumpAwayLabel = target; finallyBlock.iLeaves.Add(intername, iLeave); } target = iLeave.jumpIntoLabel; } // Finally output the branch/leave opcode. // If using Leave, prefix with a call label in case the corresponding finally block // calls CheckRun() and that CheckRun() captures the stack, it will have a point to // restore to that will properly jump back into the finally block. if(useLeave) { new CallLabel(this, errorAt); ilGen.Emit(errorAt, OpCodes.Leave, target); openCallLabel = null; } else { ilGen.Emit(errorAt, OpCodes.Br, target); } } /** * @brief output code for a jump target label statement. * If there are any backward jumps to the label, do a CheckRun() also. */ private void GenerateStmtLabel(TokenStmtLabel labelStmt) { if(!labelStmt.labelTagged) { labelStmt.labelStruct = ilGen.DefineLabel("jump_" + labelStmt.name.val); labelStmt.labelTagged = true; } ilGen.MarkLabel(labelStmt.labelStruct); if(labelStmt.hasBkwdRefs) { EmitCallCheckRun(labelStmt, false); } // We are going to say that the label falls through. // It would be nice if we could analyze all referencing // goto's to see if all of them are not used but we are // going to assume that if the script writer put a label // somewhere, it is probably going to be used. mightGetHere = true; } /** * @brief Generate code for a script-defined type's .$new() method. * It is used to malloc the object and initialize it. * It is defined as a script-defined type static method, so the object level * method gets the XMRInstance pointer passed as arg 0, and the method is * supposed to return the allocated and constructed XMRSDTypeClObj * object pointer. */ private void GenerateStmtNewobj(TokenStmtNewobj newobjStmt) { // First off, malloc a new empty XMRSDTypeClObj object // then call the XMRSDTypeClObj()-level constructor. // Store the result in local var $objptr. newobjStmt.objptrVar.location.PopPre(this, newobjStmt); ilGen.Emit(newobjStmt, OpCodes.Ldarg_0); ilGen.Emit(newobjStmt, OpCodes.Ldc_I4, curDeclFunc.sdtClass.sdTypeIndex); ilGen.Emit(newobjStmt, OpCodes.Newobj, sdtClassConstructorInfo); newobjStmt.objptrVar.location.PopPost(this, newobjStmt); // Now call the script-level constructor. // Pass the object pointer in $objptr as it's 'this' argument. // The rest of the args are the script-visible args and are just copied from $new() call. GenerateFromRValCall(newobjStmt.rValCall); // Put object pointer in retval so it gets returned to caller. newobjStmt.objptrVar.location.PushVal(this, newobjStmt); ilGen.Emit(newobjStmt, OpCodes.Stloc, retValue); // Exit the function like a return statement. // And thus we don't fall through. ilGen.Emit(newobjStmt, OpCodes.Leave, retLabel); mightGetHere = false; } /** * @brief output code for a return statement. * @param retStmt = return statement token, including return value if any */ private void GenerateStmtRet(TokenStmtRet retStmt) { if(!mightGetHere) return; for(TokenStmtBlock stmtBlock = curStmtBlock; stmtBlock != null; stmtBlock = stmtBlock.outerStmtBlock) { if(stmtBlock.isFinally) { ErrorMsg(retStmt, "cannot return out of finally"); return; } } if(curDeclFunc.retType is TokenTypeVoid) { if(retStmt.rVal != null) { ErrorMsg(retStmt, "function returns void, no value allowed"); return; } } else { if(retStmt.rVal == null) { ErrorMsg(retStmt, "function requires return value type " + curDeclFunc.retType.ToString()); return; } CompValu rVal = GenerateFromRVal(retStmt.rVal); rVal.PushVal(this, retStmt.rVal, curDeclFunc.retType); ilGen.Emit(retStmt, OpCodes.Stloc, retValue); } // Use a OpCodes.Leave instruction to break out of any try { } blocks. // All Leave's inside script-defined try { } need call labels (see GenerateStmtTry()). bool brokeOutOfTry = false; for(TokenStmtBlock stmtBlock = curStmtBlock; stmtBlock != null; stmtBlock = stmtBlock.outerStmtBlock) { if(stmtBlock.isTry) { brokeOutOfTry = true; break; } } if(brokeOutOfTry) new CallLabel(this, retStmt); ilGen.Emit(retStmt, OpCodes.Leave, retLabel); if(brokeOutOfTry) openCallLabel = null; // 'return' statements never fall through. mightGetHere = false; } /** * @brief the statement is just an expression, most likely an assignment or a ++ or -- thing. */ private void GenerateStmtRVal(TokenStmtRVal rValStmt) { if(!mightGetHere) return; GenerateFromRVal(rValStmt.rVal); } /** * @brief generate code for a 'state' statement that transitions state. * It sets the new state by throwing a ScriptChangeStateException. */ private void GenerateStmtState(TokenStmtState stateStmt) { if(!mightGetHere) return; int index = 0; // 'default' state // Set new state value by throwing an exception. // These exceptions aren't catchable by script-level try { } catch { }. if((stateStmt.state != null) && !stateIndices.TryGetValue(stateStmt.state.val, out index)) { // The moron XEngine compiles scripts that reference undefined states. // So rather than produce a compile-time error, we'll throw an exception at runtime. // ErrorMsg (stateStmt, "undefined state " + stateStmt.state.val); // throw new UndefinedStateException (stateStmt.state.val); ilGen.Emit(stateStmt, OpCodes.Ldstr, stateStmt.state.val); ilGen.Emit(stateStmt, OpCodes.Newobj, scriptUndefinedStateExceptionConstructorInfo); } else { ilGen.Emit(stateStmt, OpCodes.Ldc_I4, index); // new state's index ilGen.Emit(stateStmt, OpCodes.Newobj, scriptChangeStateExceptionConstructorInfo); } ilGen.Emit(stateStmt, OpCodes.Throw); // 'state' statements never fall through. mightGetHere = false; } /** * @brief output code for a 'switch' statement */ private void GenerateStmtSwitch(TokenStmtSwitch switchStmt) { if(!mightGetHere) return; // Output code to calculate index. CompValu testRVal = GenerateFromRVal(switchStmt.testRVal); // Generate code based on string or integer index. if((testRVal.type is TokenTypeKey) || (testRVal.type is TokenTypeStr)) GenerateStmtSwitchStr(testRVal, switchStmt); else GenerateStmtSwitchInt(testRVal, switchStmt); } private void GenerateStmtSwitchInt(CompValu testRVal, TokenStmtSwitch switchStmt) { testRVal.PushVal(this, switchStmt.testRVal, tokenTypeInt); BreakContTarg oldBreakTarg = curBreakTarg; ScriptMyLabel defaultLabel = null; TokenSwitchCase sortedCases = null; TokenSwitchCase defaultCase = null; curBreakTarg = new BreakContTarg(this, "switchbreak_" + switchStmt.Unique); // Build list of cases sorted by ascending values. // There should not be any overlapping of values. for(TokenSwitchCase thisCase = switchStmt.cases; thisCase != null; thisCase = thisCase.nextCase) { thisCase.label = ilGen.DefineLabel("case_" + thisCase.Unique); // The default case if any, goes in its own separate slot. if(thisCase.rVal1 == null) { if(defaultCase != null) { ErrorMsg(thisCase, "only one default case allowed"); ErrorMsg(defaultCase, "...prior default case"); return; } defaultCase = thisCase; defaultLabel = thisCase.label; continue; } // Evaluate case operands, they must be compile-time integer constants. CompValu rVal = GenerateFromRVal(thisCase.rVal1); if(!IsConstIntExpr(rVal, out thisCase.val1)) { ErrorMsg(thisCase.rVal1, "must be compile-time char or integer constant"); return; } thisCase.val2 = thisCase.val1; if(thisCase.rVal2 != null) { rVal = GenerateFromRVal(thisCase.rVal2); if(!IsConstIntExpr(rVal, out thisCase.val2)) { ErrorMsg(thisCase.rVal2, "must be compile-time char or integer constant"); return; } } if(thisCase.val2 < thisCase.val1) { ErrorMsg(thisCase.rVal2, "must be .ge. first value for the case"); return; } // Insert into list, sorted by value. // Note that both limits are inclusive. TokenSwitchCase lastCase = null; TokenSwitchCase nextCase; for(nextCase = sortedCases; nextCase != null; nextCase = nextCase.nextSortedCase) { if(nextCase.val1 > thisCase.val2) break; if(nextCase.val2 >= thisCase.val1) { ErrorMsg(thisCase, "value used by previous case"); ErrorMsg(nextCase, "...previous case"); return; } lastCase = nextCase; } thisCase.nextSortedCase = nextCase; if(lastCase == null) { sortedCases = thisCase; } else { lastCase.nextSortedCase = thisCase; } } if(defaultLabel == null) { defaultLabel = ilGen.DefineLabel("default_" + switchStmt.Unique); } // Output code to jump to the case statement's labels based on integer index on stack. // Note that each case still has the integer index on stack when jumped to. int offset = 0; for(TokenSwitchCase thisCase = sortedCases; thisCase != null;) { // Scan through list of cases to find the maximum number of cases who's numvalues-to-case ratio // is from 0.5 to 2.0. If such a group is found, use a CIL switch for them. If not, just use a // compare-and-branch for the current case. int numCases = 0; int numFound = 0; int lowValue = thisCase.val1; int numValues = 0; for(TokenSwitchCase scanCase = thisCase; scanCase != null; scanCase = scanCase.nextSortedCase) { int nVals = scanCase.val2 - thisCase.val1 + 1; double ratio = (double)nVals / (double)(++numCases); if((ratio >= 0.5) && (ratio <= 2.0)) { numFound = numCases; numValues = nVals; } } if(numFound > 1) { // There is a group of case's, starting with thisCase, that fall within our criteria, ie, // that have a nice density of meaningful jumps. // // So first generate an array of jumps to the default label (explicit or implicit). ScriptMyLabel[] labels = new ScriptMyLabel[numValues]; for(int i = 0; i < numValues; i++) { labels[i] = defaultLabel; } // Next, for each case in that group, fill in the corresponding array entries to jump to // that case's label. do { for(int i = thisCase.val1; i <= thisCase.val2; i++) { labels[i - lowValue] = thisCase.label; } thisCase = thisCase.nextSortedCase; } while(--numFound > 0); // Subtract the low value and do the computed jump. // The OpCodes.Switch falls through if out of range (unsigned compare). if(offset != lowValue) { ilGen.Emit(switchStmt, OpCodes.Ldc_I4, lowValue - offset); ilGen.Emit(switchStmt, OpCodes.Sub); offset = lowValue; } ilGen.Emit(switchStmt, OpCodes.Dup); ilGen.Emit(switchStmt, OpCodes.Switch, labels); } else { // It's not economical to do with a computed jump, so output a subtract/compare/branch // for thisCase. if(lowValue == thisCase.val2) { ilGen.Emit(switchStmt, OpCodes.Dup); ilGen.Emit(switchStmt, OpCodes.Ldc_I4, lowValue - offset); ilGen.Emit(switchStmt, OpCodes.Beq, thisCase.label); } else { if(offset != lowValue) { ilGen.Emit(switchStmt, OpCodes.Ldc_I4, lowValue - offset); ilGen.Emit(switchStmt, OpCodes.Sub); offset = lowValue; } ilGen.Emit(switchStmt, OpCodes.Dup); ilGen.Emit(switchStmt, OpCodes.Ldc_I4, thisCase.val2 - offset); ilGen.Emit(switchStmt, OpCodes.Ble_Un, thisCase.label); } thisCase = thisCase.nextSortedCase; } } ilGen.Emit(switchStmt, OpCodes.Br, defaultLabel); // Output code for the cases themselves, in the order given by the programmer, // so they fall through as programmer wants. This includes the default case, if any. // // Each label is jumped to with the index still on the stack. So pop it off in case // the case body does a goto outside the switch or a return. If the case body might // fall through to the next case or the bottom of the switch, push a zero so the stack // matches in all cases. for(TokenSwitchCase thisCase = switchStmt.cases; thisCase != null; thisCase = thisCase.nextCase) { ilGen.MarkLabel(thisCase.label); // the branch comes here ilGen.Emit(thisCase, OpCodes.Pop); // pop the integer index off stack mightGetHere = true; // it's possible to get here for(TokenStmt stmt = thisCase.stmts; stmt != null; stmt = (TokenStmt)(stmt.nextToken)) { GenerateStmt(stmt); // output the case/explicit default body } if(mightGetHere) { ilGen.Emit(thisCase, OpCodes.Ldc_I4_0); // in case we fall through, push a dummy integer index } } // If no explicit default case, output the default label here. if(defaultCase == null) { ilGen.MarkLabel(defaultLabel); mightGetHere = true; } // If the last case of the switch falls through out the bottom, // we have to pop the index still on the stack. if(mightGetHere) { ilGen.Emit(switchStmt, OpCodes.Pop); } // Output the 'break' statement target label. // Note that the integer index is not on the stack at this point. if(curBreakTarg.used) { ilGen.MarkLabel(curBreakTarg.label); mightGetHere = true; } curBreakTarg = oldBreakTarg; } private void GenerateStmtSwitchStr(CompValu testRVal, TokenStmtSwitch switchStmt) { BreakContTarg oldBreakTarg = curBreakTarg; ScriptMyLabel defaultLabel = null; TokenSwitchCase caseTreeTop = null; TokenSwitchCase defaultCase = null; curBreakTarg = new BreakContTarg(this, "switchbreak_" + switchStmt.Unique); // Make sure value is in a temp so we don't compute it more than once. if(!(testRVal is CompValuTemp)) { CompValuTemp temp = new CompValuTemp(testRVal.type, this); testRVal.PushVal(this, switchStmt); temp.Pop(this, switchStmt); testRVal = temp; } // Build tree of cases. // There should not be any overlapping of values. for(TokenSwitchCase thisCase = switchStmt.cases; thisCase != null; thisCase = thisCase.nextCase) { thisCase.label = ilGen.DefineLabel("case"); // The default case if any, goes in its own separate slot. if(thisCase.rVal1 == null) { if(defaultCase != null) { ErrorMsg(thisCase, "only one default case allowed"); ErrorMsg(defaultCase, "...prior default case"); return; } defaultCase = thisCase; defaultLabel = thisCase.label; continue; } // Evaluate case operands, they must be compile-time string constants. CompValu rVal = GenerateFromRVal(thisCase.rVal1); if(!IsConstStrExpr(rVal, out thisCase.str1)) { ErrorMsg(thisCase.rVal1, "must be compile-time string constant"); continue; } thisCase.str2 = thisCase.str1; if(thisCase.rVal2 != null) { rVal = GenerateFromRVal(thisCase.rVal2); if(!IsConstStrExpr(rVal, out thisCase.str2)) { ErrorMsg(thisCase.rVal2, "must be compile-time string constant"); continue; } } if(String.Compare(thisCase.str2, thisCase.str1, StringComparison.Ordinal) < 0) { ErrorMsg(thisCase.rVal2, "must be .ge. first value for the case"); continue; } // Insert into list, sorted by value. // Note that both limits are inclusive. caseTreeTop = InsertCaseInTree(caseTreeTop, thisCase); } // Balance tree so we end up generating code that does O(log2 n) comparisons. caseTreeTop = BalanceTree(caseTreeTop); // Output compare and branch instructions in a tree-like fashion so we do O(log2 n) comparisons. if(defaultLabel == null) { defaultLabel = ilGen.DefineLabel("default"); } OutputStrCase(testRVal, caseTreeTop, defaultLabel); // Output code for the cases themselves, in the order given by the programmer, // so they fall through as programmer wants. This includes the default case, if any. for(TokenSwitchCase thisCase = switchStmt.cases; thisCase != null; thisCase = thisCase.nextCase) { ilGen.MarkLabel(thisCase.label); // the branch comes here mightGetHere = true; // it's possible to get here for(TokenStmt stmt = thisCase.stmts; stmt != null; stmt = (TokenStmt)(stmt.nextToken)) { GenerateStmt(stmt); // output the case/explicit default body } } // If no explicit default case, output the default label here. if(defaultCase == null) { ilGen.MarkLabel(defaultLabel); mightGetHere = true; } // Output the 'break' statement target label. if(curBreakTarg.used) { ilGen.MarkLabel(curBreakTarg.label); mightGetHere = true; } curBreakTarg = oldBreakTarg; } /** * @brief Insert a case in a tree of cases * @param r = root of existing cases to insert into * @param n = new case being inserted * @returns new root with new case inserted */ private TokenSwitchCase InsertCaseInTree(TokenSwitchCase r, TokenSwitchCase n) { if(r == null) return n; TokenSwitchCase t = r; while(true) { if(String.Compare(n.str2, t.str1, StringComparison.Ordinal) < 0) { if(t.lowerCase == null) { t.lowerCase = n; break; } t = t.lowerCase; continue; } if(String.Compare(n.str1, t.str2, StringComparison.Ordinal) > 0) { if(t.higherCase == null) { t.higherCase = n; break; } t = t.higherCase; continue; } ErrorMsg(n, "duplicate case"); ErrorMsg(r, "...duplicate of"); break; } return r; } /** * @brief Balance a tree so left & right halves contain same number within +-1 * @param r = root of tree to balance * @returns new root */ private static TokenSwitchCase BalanceTree(TokenSwitchCase r) { if(r == null) return r; int lc = CountTree(r.lowerCase); int hc = CountTree(r.higherCase); TokenSwitchCase n, x; // If lower side is heavy, move highest nodes from lower side to // higher side until balanced. while(lc > hc + 1) { x = ExtractHighest(r.lowerCase, out n); n.lowerCase = x; n.higherCase = r; r.lowerCase = null; r = n; lc--; hc++; } // If higher side is heavy, move lowest nodes from higher side to // lower side until balanced. while(hc > lc + 1) { x = ExtractLowest(r.higherCase, out n); n.higherCase = x; n.lowerCase = r; r.higherCase = null; r = n; lc++; hc--; } // Now balance each side because they can be lopsided individually. r.lowerCase = BalanceTree(r.lowerCase); r.higherCase = BalanceTree(r.higherCase); return r; } /** * @brief Get number of nodes in a tree * @param n = root of tree to count * @returns number of nodes including root */ private static int CountTree(TokenSwitchCase n) { if(n == null) return 0; return 1 + CountTree(n.lowerCase) + CountTree(n.higherCase); } // Extract highest node from a tree // @param r = root of tree to extract highest from // @returns new root after node has been extracted // n = node that was extracted from tree private static TokenSwitchCase ExtractHighest(TokenSwitchCase r, out TokenSwitchCase n) { if(r.higherCase == null) { n = r; return r.lowerCase; } r.higherCase = ExtractHighest(r.higherCase, out n); return r; } // Extract lowest node from a tree // @param r = root of tree to extract lowest from // @returns new root after node has been extracted // n = node that was extracted from tree private static TokenSwitchCase ExtractLowest(TokenSwitchCase r, out TokenSwitchCase n) { if(r.lowerCase == null) { n = r; return r.higherCase; } r.lowerCase = ExtractLowest(r.lowerCase, out n); return r; } /** * Output code for string-style case of a switch/case to jump to the script code associated with the case. * @param testRVal = value being switched on * @param thisCase = case that the code is being output for * @param defaultLabel = where the default clause is (or past all cases if none) * Note: * Outputs code for this case and the lowerCase and higherCases if any. * If no lowerCase or higherCase, outputs a br to defaultLabel so this code never falls through. */ private void OutputStrCase(CompValu testRVal, TokenSwitchCase thisCase, ScriptMyLabel defaultLabel) { // If nothing lower on tree and there is a single case value, // just do one compare for equality. if((thisCase.lowerCase == null) && (thisCase.higherCase == null) && (thisCase.str1 == thisCase.str2)) { testRVal.PushVal(this, thisCase, tokenTypeStr); ilGen.Emit(thisCase, OpCodes.Ldstr, thisCase.str1); ilGen.Emit(thisCase, OpCodes.Ldc_I4, (int)StringComparison.Ordinal); ilGen.Emit(thisCase, OpCodes.Call, stringCompareMethodInfo); ilGen.Emit(thisCase, OpCodes.Brfalse, thisCase.label); ilGen.Emit(thisCase, OpCodes.Br, defaultLabel); return; } // Determine where to jump if switch value is lower than lower case value. ScriptMyLabel lowerLabel = defaultLabel; if(thisCase.lowerCase != null) { lowerLabel = ilGen.DefineLabel("lower"); } // If single case value, put comparison result in this temp. CompValuTemp cmpv1 = null; if(thisCase.str1 == thisCase.str2) { cmpv1 = new CompValuTemp(tokenTypeInt, this); } // If switch value .lt. lower case value, jump to lower label. // Maybe save comparison result in a temp. testRVal.PushVal(this, thisCase, tokenTypeStr); ilGen.Emit(thisCase, OpCodes.Ldstr, thisCase.str1); ilGen.Emit(thisCase, OpCodes.Ldc_I4, (int)StringComparison.Ordinal); ilGen.Emit(thisCase, OpCodes.Call, stringCompareMethodInfo); if(cmpv1 != null) { ilGen.Emit(thisCase, OpCodes.Dup); cmpv1.Pop(this, thisCase); } ilGen.Emit(thisCase, OpCodes.Ldc_I4_0); ilGen.Emit(thisCase, OpCodes.Blt, lowerLabel); // If switch value .le. higher case value, jump to case code. // Maybe get comparison from the temp. if(cmpv1 == null) { testRVal.PushVal(this, thisCase, tokenTypeStr); ilGen.Emit(thisCase, OpCodes.Ldstr, thisCase.str2); ilGen.Emit(thisCase, OpCodes.Ldc_I4, (int)StringComparison.Ordinal); ilGen.Emit(thisCase, OpCodes.Call, stringCompareMethodInfo); } else { cmpv1.PushVal(this, thisCase); } ilGen.Emit(thisCase, OpCodes.Ldc_I4_0); ilGen.Emit(thisCase, OpCodes.Ble, thisCase.label); // Output code for higher comparison if any. if(thisCase.higherCase == null) { ilGen.Emit(thisCase, OpCodes.Br, defaultLabel); } else { OutputStrCase(testRVal, thisCase.higherCase, defaultLabel); } // Output code for lower comparison if any. if(thisCase.lowerCase != null) { ilGen.MarkLabel(lowerLabel); OutputStrCase(testRVal, thisCase.lowerCase, defaultLabel); } } /** * @brief output code for a throw statement. * @param throwStmt = throw statement token, including value to be thrown */ private void GenerateStmtThrow(TokenStmtThrow throwStmt) { if(!mightGetHere) return; // 'throw' statements never fall through. mightGetHere = false; // Output code for either a throw or a rethrow. if(throwStmt.rVal == null) { for(TokenStmtBlock blk = curStmtBlock; blk != null; blk = blk.outerStmtBlock) { if(curStmtBlock.isCatch) { ilGen.Emit(throwStmt, OpCodes.Rethrow); return; } } ErrorMsg(throwStmt, "rethrow allowed only in catch clause"); } else { CompValu rVal = GenerateFromRVal(throwStmt.rVal); rVal.PushVal(this, throwStmt.rVal, tokenTypeObj); ilGen.Emit(throwStmt, OpCodes.Call, thrownExceptionWrapMethodInfo); ilGen.Emit(throwStmt, OpCodes.Throw); } } /** * @brief output code for a try/catch/finally block */ private void GenerateStmtTry(TokenStmtTry tryStmt) { if(!mightGetHere) return; /* * Reducer should make sure we have exactly one of catch or finally. */ if((tryStmt.catchStmt == null) && (tryStmt.finallyStmt == null)) { throw new Exception("must have a catch or a finally on try"); } if((tryStmt.catchStmt != null) && (tryStmt.finallyStmt != null)) { throw new Exception("can't have both catch and finally on same try"); } // Stack the call labels. // Try blocks have their own series of call labels. ScriptMyLocal saveCallNo = actCallNo; LinkedList saveCallLabels = actCallLabels; // Generate code for either try { } catch { } or try { } finally { }. if(tryStmt.catchStmt != null) GenerateStmtTryCatch(tryStmt); if(tryStmt.finallyStmt != null) GenerateStmtTryFinally(tryStmt); // Restore call labels. actCallNo = saveCallNo; actCallLabels = saveCallLabels; } /** * @brief output code for a try/catch block * * int __tryCallNo = -1; // call number within try { } subblock * int __catCallNo = -1; // call number within catch { } subblock * Exception __catThrown = null; // caught exception * : // the outside world jumps here to restore us no matter ... * try { // ... where we actually were inside of try/catch * if (__tryCallNo >= 0) goto tryCallSw; // maybe go do restore * // execute script-defined code * // ...stack capture WILL run catch { } subblock * leave tryEnd; // exits * tryThrow:: * throw new ScriptRestoreCatchException(__catThrown); // catch { } was running, jump to its beginning * tryCallSw: // restoring... * switch (__tryCallNo) back up into // not catching, jump back inside try * } catch (Exception exc) { * exc = ScriptRestoreCatchException.Unwrap(exc); // unwrap possible ScriptRestoreCatchException * if (exc == null) goto catchRetro; // rethrow if IXMRUncatchable (eg, StackCaptureException) * __catThrown = exc; // save what was thrown so restoring try { } will throw it again * catchVar = exc; // set up script-visible variable * __tryCallNo = tryThrow: * if (__catCallNo >= 0) goto catchCallSw; // if restoring, go check below * // normal, execute script-defined code * leave tryEnd; // all done, exit catch { } * catchRetro: * rethrow; * catchCallSw: * switch (__catCallNo) back up into // restart catch { } code wherever it was * } * tryEnd: */ private void GenerateStmtTryCatch(TokenStmtTry tryStmt) { CompValuTemp tryCallNo = new CompValuTemp(tokenTypeInt, this); CompValuTemp catCallNo = new CompValuTemp(tokenTypeInt, this); CompValuTemp catThrown = new CompValuTemp(tokenTypeExc, this); ScriptMyLabel tryCallSw = ilGen.DefineLabel("__tryCallSw_" + tryStmt.Unique); ScriptMyLabel catchRetro = ilGen.DefineLabel("__catchRetro_" + tryStmt.Unique); ScriptMyLabel catchCallSw = ilGen.DefineLabel("__catchCallSw_" + tryStmt.Unique); ScriptMyLabel tryEnd = ilGen.DefineLabel("__tryEnd_" + tryStmt.Unique); SetCallNo(tryStmt, tryCallNo, -1); SetCallNo(tryStmt, catCallNo, -1); ilGen.Emit(tryStmt, OpCodes.Ldnull); catThrown.Pop(this, tryStmt); new CallLabel(this, tryStmt); // : ilGen.BeginExceptionBlock(); // try { openCallLabel = null; GetCallNo(tryStmt, tryCallNo); // if (__tryCallNo >= 0) goto tryCallSw; ilGen.Emit(tryStmt, OpCodes.Ldc_I4_0); ilGen.Emit(tryStmt, OpCodes.Bge, tryCallSw); actCallNo = tryCallNo.localBuilder; // set up __tryCallNo for call labels actCallLabels = new LinkedList(); GenerateStmtBlock(tryStmt.tryStmt); // output the try block statement subblock bool tryBlockFallsOutBottom = mightGetHere; if(tryBlockFallsOutBottom) { new CallLabel(this, tryStmt); // : ilGen.Emit(tryStmt, OpCodes.Leave, tryEnd); // leave tryEnd; openCallLabel = null; } CallLabel tryThrow = new CallLabel(this, tryStmt); // tryThrow:: catThrown.PushVal(this, tryStmt); // throw new ScriptRestoreCatchException (__catThrown); ilGen.Emit(tryStmt, OpCodes.Newobj, scriptRestoreCatchExceptionConstructorInfo); ilGen.Emit(tryStmt, OpCodes.Throw); openCallLabel = null; ilGen.MarkLabel(tryCallSw); // tryCallSw: OutputCallNoSwitchStmt(); // switch (tryCallNo) ... CompValuLocalVar catchVarLocExc = null; CompValuTemp catchVarLocStr = null; if(tryStmt.catchVar.type.ToSysType() == typeof(Exception)) { catchVarLocExc = new CompValuLocalVar(tryStmt.catchVar.type, tryStmt.catchVar.name.val, this); } else if(tryStmt.catchVar.type.ToSysType() == typeof(String)) { catchVarLocStr = new CompValuTemp(tryStmt.catchVar.type, this); } ScriptMyLocal excLocal = ilGen.DeclareLocal(typeof(String), "catchstr_" + tryStmt.Unique); ilGen.BeginCatchBlock(typeof(Exception)); // start of the catch block that can catch any exception ilGen.Emit(tryStmt.catchStmt, OpCodes.Call, scriptRestoreCatchExceptionUnwrap); // exc = ScriptRestoreCatchException.Unwrap (exc); ilGen.Emit(tryStmt.catchStmt, OpCodes.Dup); // rethrow if IXMRUncatchable (eg, StackCaptureException) ilGen.Emit(tryStmt.catchStmt, OpCodes.Brfalse, catchRetro); if(tryStmt.catchVar.type.ToSysType() == typeof(Exception)) { tryStmt.catchVar.location = catchVarLocExc; ilGen.Emit(tryStmt.catchStmt, OpCodes.Dup); catThrown.Pop(this, tryStmt); // store exception object in catThrown catchVarLocExc.Pop(this, tryStmt.catchVar.name); // also store in script-visible variable } else if(tryStmt.catchVar.type.ToSysType() == typeof(String)) { tryStmt.catchVar.location = catchVarLocStr; ilGen.Emit(tryStmt.catchStmt, OpCodes.Dup); catThrown.Pop(this, tryStmt); // store exception object in catThrown ilGen.Emit(tryStmt.catchStmt, OpCodes.Call, catchExcToStrMethodInfo); ilGen.Emit(tryStmt.catchStmt, OpCodes.Stloc, excLocal); catchVarLocStr.PopPre(this, tryStmt.catchVar.name); ilGen.Emit(tryStmt.catchStmt, OpCodes.Ldloc, excLocal); catchVarLocStr.PopPost(this, tryStmt.catchVar.name, tokenTypeStr); } else { throw new Exception("bad catch var type " + tryStmt.catchVar.type.ToString()); } SetCallNo(tryStmt, tryCallNo, tryThrow.index); // __tryCallNo = tryThrow so it knows to do 'throw catThrown' on restore GetCallNo(tryStmt, catCallNo); // if (__catCallNo >= 0) goto catchCallSw; ilGen.Emit(tryStmt.catchStmt, OpCodes.Ldc_I4_0); ilGen.Emit(tryStmt.catchStmt, OpCodes.Bge, catchCallSw); actCallNo = catCallNo.localBuilder; // set up __catCallNo for call labels actCallLabels.Clear(); mightGetHere = true; // if we can get to the 'try' assume we can get to the 'catch' GenerateStmtBlock(tryStmt.catchStmt); // output catch clause statement subblock if(mightGetHere) { new CallLabel(this, tryStmt.catchStmt); ilGen.Emit(tryStmt.catchStmt, OpCodes.Leave, tryEnd); openCallLabel = null; } ilGen.MarkLabel(catchRetro); // not a script-visible exception, rethrow it ilGen.Emit(tryStmt.catchStmt, OpCodes.Pop); ilGen.Emit(tryStmt.catchStmt, OpCodes.Rethrow); ilGen.MarkLabel(catchCallSw); OutputCallNoSwitchStmt(); // restoring, jump back inside script-defined body ilGen.EndExceptionBlock(); ilGen.MarkLabel(tryEnd); mightGetHere |= tryBlockFallsOutBottom; // also get here if try body falls out bottom } /** * @brief output code for a try/finally block * * This is such a mess because there is hidden state for the finally { } that we have to recreate. * The finally { } can be entered either via an exception being thrown in the try { } or a leave * being executed in the try { } whose target is outside the try { } finally { }. * * For the thrown exception case, we slip in a try { } catch { } wrapper around the original try { } * body. This will sense any thrown exception that would execute the finally { }. Then we have our * try { } throw the exception on restore which gets the finally { } called and on its way again. * * For the leave case, we prefix all leave instructions with a call label and we explicitly chain * all leaves through each try { } that has an associated finally { } that the leave would unwind * through. This gets each try { } to simply jump to the correct leave instruction which immediately * invokes the corresponding finally { } and then chains to the next leave instruction on out until * it gets to its target. * * int __finCallNo = -1; // call number within finally { } subblock * int __tryCallNo = -1; // call number within try { } subblock * Exception __catThrown = null; // caught exception * : // the outside world jumps here to restore us no matter ... * try { // ... where we actually were inside of try/finally * try { * if (__tryCallNo >= 0) goto tryCallSw; // maybe go do restore * // execute script-defined code * // ...stack capture WILL run catch/finally { } subblock * leave tryEnd; // executes finally { } subblock and exits * tryThrow:: * throw new ScriptRestoreCatchException(__catThrown); // catch { } was running, jump to its beginning * tryCallSw: // restoring... * switch (__tryCallNo) back up into // jump back inside try, ... * // ... maybe to a leave if we were doing finally { } subblock * } catch (Exception exc) { // in case we're getting to finally { } via a thrown exception: * exc = ScriptRestoreCatchException.Unwrap(exc); // unwrap possible ScriptRestoreCatchException * if (callMode == CallMode_SAVE) goto catchRetro; // don't touch anything if capturing stack * __catThrown = exc; // save exception so try { } can throw it on restore * __tryCallNo = tryThrow:; // tell try { } to throw it on restore * catchRetro: * rethrow; // in any case, go on to finally { } subblock now * } * } finally { * if (callMode == CallMode_SAVE) goto finEnd; // don't touch anything if capturing stack * if (__finCallNo >= 0) goto finCallSw; // maybe go do restore * // normal, execute script-defined code * finEnd: * endfinally // jump to leave/throw target or next outer finally { } * finCallSw: * switch (__finCallNo) back up into // restoring, restart finally { } code wherever it was * } * tryEnd: */ private void GenerateStmtTryFinally(TokenStmtTry tryStmt) { CompValuTemp finCallNo = new CompValuTemp(tokenTypeInt, this); CompValuTemp tryCallNo = new CompValuTemp(tokenTypeInt, this); CompValuTemp catThrown = new CompValuTemp(tokenTypeExc, this); ScriptMyLabel tryCallSw = ilGen.DefineLabel("__tryCallSw_" + tryStmt.Unique); ScriptMyLabel catchRetro = ilGen.DefineLabel("__catchRetro_" + tryStmt.Unique); ScriptMyLabel finCallSw = ilGen.DefineLabel("__finCallSw_" + tryStmt.Unique); BreakContTarg finEnd = new BreakContTarg(this, "__finEnd_" + tryStmt.Unique); ScriptMyLabel tryEnd = ilGen.DefineLabel("__tryEnd_" + tryStmt.Unique); SetCallNo(tryStmt, finCallNo, -1); SetCallNo(tryStmt, tryCallNo, -1); ilGen.Emit(tryStmt, OpCodes.Ldnull); catThrown.Pop(this, tryStmt); new CallLabel(this, tryStmt); // : ilGen.BeginExceptionBlock(); // try { ilGen.BeginExceptionBlock(); // try { openCallLabel = null; GetCallNo(tryStmt, tryCallNo); // if (__tryCallNo >= 0) goto tryCallSw; ilGen.Emit(tryStmt, OpCodes.Ldc_I4_0); ilGen.Emit(tryStmt, OpCodes.Bge, tryCallSw); actCallNo = tryCallNo.localBuilder; // set up __tryCallNo for call labels actCallLabels = new LinkedList(); GenerateStmtBlock(tryStmt.tryStmt); // output the try block statement subblock if(mightGetHere) { new CallLabel(this, tryStmt); // : ilGen.Emit(tryStmt, OpCodes.Leave, tryEnd); // leave tryEnd; openCallLabel = null; } foreach(IntermediateLeave iLeave in tryStmt.iLeaves.Values) { ilGen.MarkLabel(iLeave.jumpIntoLabel); // intr2_exit: new CallLabel(this, tryStmt); // tryCallNo = n; ilGen.Emit(tryStmt, OpCodes.Leave, iLeave.jumpAwayLabel); // __callNo_n_: leave int1_exit; openCallLabel = null; } CallLabel tryThrow = new CallLabel(this, tryStmt); // tryThrow:: catThrown.PushVal(this, tryStmt); // throw new ScriptRestoreCatchException (__catThrown); ilGen.Emit(tryStmt, OpCodes.Newobj, scriptRestoreCatchExceptionConstructorInfo); ilGen.Emit(tryStmt, OpCodes.Throw); openCallLabel = null; ilGen.MarkLabel(tryCallSw); // tryCallSw: OutputCallNoSwitchStmt(); // switch (tryCallNo) ... // } ilGen.BeginCatchBlock(typeof(Exception)); // start of the catch block that can catch any exception ilGen.Emit(tryStmt, OpCodes.Call, scriptRestoreCatchExceptionUnwrap); // exc = ScriptRestoreCatchException.Unwrap (exc); PushXMRInst(); // if (callMode == CallMode_SAVE) goto catchRetro; ilGen.Emit(tryStmt, OpCodes.Ldfld, callModeFieldInfo); ilGen.Emit(tryStmt, OpCodes.Ldc_I4, XMRInstAbstract.CallMode_SAVE); ilGen.Emit(tryStmt, OpCodes.Beq, catchRetro); catThrown.Pop(this, tryStmt); // __catThrown = exc; SetCallNo(tryStmt, tryCallNo, tryThrow.index); // __tryCallNo = tryThrow:; ilGen.Emit(tryStmt, OpCodes.Rethrow); ilGen.MarkLabel(catchRetro); // catchRetro: ilGen.Emit(tryStmt, OpCodes.Pop); ilGen.Emit(tryStmt, OpCodes.Rethrow); // rethrow; ilGen.EndExceptionBlock(); // } ilGen.BeginFinallyBlock(); // start of the finally block PushXMRInst(); // if (callMode == CallMode_SAVE) goto finEnd; ilGen.Emit(tryStmt, OpCodes.Ldfld, callModeFieldInfo); ilGen.Emit(tryStmt, OpCodes.Ldc_I4, XMRInstAbstract.CallMode_SAVE); ilGen.Emit(tryStmt, OpCodes.Beq, finEnd.label); GetCallNo(tryStmt, finCallNo); // if (__finCallNo >= 0) goto finCallSw; ilGen.Emit(tryStmt, OpCodes.Ldc_I4_0); ilGen.Emit(tryStmt, OpCodes.Bge, finCallSw); actCallNo = finCallNo.localBuilder; // set up __finCallNo for call labels actCallLabels.Clear(); mightGetHere = true; // if we can get to the 'try' assume we can get to the 'finally' GenerateStmtBlock(tryStmt.finallyStmt); // output finally clause statement subblock ilGen.MarkLabel(finEnd.label); // finEnd: ilGen.Emit(tryStmt, OpCodes.Endfinally); // return out to next finally { } or catch { } or leave target ilGen.MarkLabel(finCallSw); // restore mode, switch (finCallNo) ... OutputCallNoSwitchStmt(); ilGen.EndExceptionBlock(); ilGen.MarkLabel(tryEnd); mightGetHere |= finEnd.used; // get here if finally body falls through or has a break statement } /** * @brief Generate code to initialize a variable to its default value. */ private void GenerateStmtVarIniDef(TokenStmtVarIniDef varIniDefStmt) { if(!mightGetHere) return; CompValu left = GenerateFromLVal(varIniDefStmt.var); left.PopPre(this, varIniDefStmt); PushDefaultValue(left.type); left.PopPost(this, varIniDefStmt); } /** * @brief generate code for a 'while' statement including the loop body. */ private void GenerateStmtWhile(TokenStmtWhile whileStmt) { if(!mightGetHere) return; BreakContTarg oldBreakTarg = curBreakTarg; BreakContTarg oldContTarg = curContTarg; ScriptMyLabel loopLabel = ilGen.DefineLabel("whileloop_" + whileStmt.Unique); curBreakTarg = new BreakContTarg(this, "whilebreak_" + whileStmt.Unique); curContTarg = new BreakContTarg(this, "whilecont_" + whileStmt.Unique); ilGen.MarkLabel(loopLabel); // loop: CompValu testRVal = GenerateFromRVal(whileStmt.testRVal); // testRVal = while test expression if(!IsConstBoolExprTrue(testRVal)) { testRVal.PushVal(this, whileStmt.testRVal, tokenTypeBool); // if (!testRVal) ilGen.Emit(whileStmt, OpCodes.Brfalse, curBreakTarg.label); // goto break curBreakTarg.used = true; } GenerateStmt(whileStmt.bodyStmt); // while body statement if(curContTarg.used) { ilGen.MarkLabel(curContTarg.label); // cont: mightGetHere = true; } if(mightGetHere) { EmitCallCheckRun(whileStmt, false); // __sw.CheckRun() ilGen.Emit(whileStmt, OpCodes.Br, loopLabel); // goto loop } mightGetHere = curBreakTarg.used; if(mightGetHere) { ilGen.MarkLabel(curBreakTarg.label); // done: } curBreakTarg = oldBreakTarg; curContTarg = oldContTarg; } /** * @brief process a local variable declaration statement, possibly with initialization expression. * Note that the function header processing allocated stack space (CompValuTemp) for the * variable and now all we do is write its initialization value. */ private void GenerateDeclVar(TokenDeclVar declVar) { // Script gave us an initialization value, so just store init value in var like an assignment statement. // If no init given, set it to its default value. CompValu local = declVar.location; if(declVar.init != null) { CompValu rVal = GenerateFromRVal(declVar.init, local.GetArgTypes()); local.PopPre(this, declVar); rVal.PushVal(this, declVar.init, declVar.type); local.PopPost(this, declVar); } else { local.PopPre(this, declVar); PushDefaultValue(declVar.type); local.PopPost(this, declVar); } } /** * @brief Get the type and location of an L-value (eg, variable) * @param lVal = L-value expression to evaluate * @param argsig = null: it's a field/property * else: select overload method that fits these arg types */ private CompValu GenerateFromLVal(TokenLVal lVal) { return GenerateFromLVal(lVal, null); } private CompValu GenerateFromLVal(TokenLVal lVal, TokenType[] argsig) { if(lVal is TokenLValArEle) return GenerateFromLValArEle((TokenLValArEle)lVal); if(lVal is TokenLValBaseField) return GenerateFromLValBaseField((TokenLValBaseField)lVal, argsig); if(lVal is TokenLValIField) return GenerateFromLValIField((TokenLValIField)lVal, argsig); if(lVal is TokenLValName) return GenerateFromLValName((TokenLValName)lVal, argsig); if(lVal is TokenLValSField) return GenerateFromLValSField((TokenLValSField)lVal, argsig); throw new Exception("bad lval class"); } /** * @brief we have an L-value token that is an element within an array. * @returns a CompValu giving the type and location of the element of the array. */ private CompValu GenerateFromLValArEle(TokenLValArEle lVal) { CompValu subCompValu; // Compute location of array itself. CompValu baseCompValu = GenerateFromRVal(lVal.baseRVal); // Maybe it is a fixed array access. string basetypestring = baseCompValu.type.ToString(); if(basetypestring.EndsWith("]")) { TokenRVal subRVal = lVal.subRVal; int nSubs = 1; if(subRVal is TokenRValList) { nSubs = ((TokenRValList)subRVal).nItems; subRVal = ((TokenRValList)subRVal).rVal; } int rank = basetypestring.IndexOf(']') - basetypestring.IndexOf('['); if(nSubs != rank) { ErrorMsg(lVal.baseRVal, "expect " + rank + " subscript" + ((rank == 1) ? "" : "s") + " but have " + nSubs); } CompValu[] subCompValus = new CompValu[rank]; int i; for(i = 0; (subRVal != null) && (i < rank); i++) { subCompValus[i] = GenerateFromRVal(subRVal); subRVal = (TokenRVal)subRVal.nextToken; } while(i < rank) subCompValus[i++] = new CompValuInteger(new TokenTypeInt(lVal.subRVal), 0); return new CompValuFixArEl(this, baseCompValu, subCompValus); } // Maybe it is accessing the $idxprop property of a script-defined class. if(baseCompValu.type is TokenTypeSDTypeClass) { TokenName name = new TokenName(lVal, "$idxprop"); TokenTypeSDTypeClass sdtType = (TokenTypeSDTypeClass)baseCompValu.type; TokenDeclSDTypeClass sdtDecl = sdtType.decl; TokenDeclVar idxProp = FindThisMember(sdtDecl, name, null); if(idxProp == null) { ErrorMsg(lVal, "no index property in class " + sdtDecl.longName.val); return new CompValuVoid(lVal); } if((idxProp.sdtFlags & ScriptReduce.SDT_STATIC) != 0) { ErrorMsg(lVal, "non-static reference to static member " + idxProp.name.val); return new CompValuVoid(idxProp); } CheckAccess(idxProp, name); TokenType[] argTypes = IdxPropArgTypes(idxProp); CompValu[] compValus = IdxPropCompValus(lVal, argTypes.Length); return new CompValuIdxProp(idxProp, baseCompValu, argTypes, compValus); } // Maybe they are accessing $idxprop property of a script-defined interface. if(baseCompValu.type is TokenTypeSDTypeInterface) { TokenName name = new TokenName(lVal, "$idxprop"); TokenTypeSDTypeInterface sdtType = (TokenTypeSDTypeInterface)baseCompValu.type; TokenDeclVar idxProp = FindInterfaceMember(sdtType, name, null, ref baseCompValu); if(idxProp == null) { ErrorMsg(lVal, "no index property defined for interface " + sdtType.decl.longName.val); return baseCompValu; } TokenType[] argTypes = IdxPropArgTypes(idxProp); CompValu[] compValus = IdxPropCompValus(lVal, argTypes.Length); return new CompValuIdxProp(idxProp, baseCompValu, argTypes, compValus); } // Maybe it is extracting a character from a string. if((baseCompValu.type is TokenTypeKey) || (baseCompValu.type is TokenTypeStr)) { subCompValu = GenerateFromRVal(lVal.subRVal); return new CompValuStrChr(new TokenTypeChar(lVal), baseCompValu, subCompValu); } // Maybe it is extracting an element from a list. if(baseCompValu.type is TokenTypeList) { subCompValu = GenerateFromRVal(lVal.subRVal); return new CompValuListEl(new TokenTypeObject(lVal), baseCompValu, subCompValu); } // Access should be to XMR_Array otherwise. if(!(baseCompValu.type is TokenTypeArray)) { ErrorMsg(lVal, "taking subscript of non-array"); return baseCompValu; } subCompValu = GenerateFromRVal(lVal.subRVal); return new CompValuArEle(new TokenTypeObject(lVal), baseCompValu, subCompValu); } /** * @brief Get number and type of arguments required by an index property. */ private static TokenType[] IdxPropArgTypes(TokenDeclVar idxProp) { TokenType[] argTypes; if(idxProp.getProp != null) { int nArgs = idxProp.getProp.argDecl.varDict.Count; argTypes = new TokenType[nArgs]; foreach(TokenDeclVar var in idxProp.getProp.argDecl.varDict) { argTypes[var.vTableIndex] = var.type; } } else { int nArgs = idxProp.setProp.argDecl.varDict.Count - 1; argTypes = new TokenType[nArgs]; foreach(TokenDeclVar var in idxProp.setProp.argDecl.varDict) { if(var.vTableIndex < nArgs) { argTypes[var.vTableIndex] = var.type; } } } return argTypes; } /** * @brief Get number and computed value of index property arguments. * @param lVal = list of arguments * @param nArgs = number of arguments required * @returns null: argument count mismatch * else: array of index property argument values */ private CompValu[] IdxPropCompValus(TokenLValArEle lVal, int nArgs) { TokenRVal subRVal = lVal.subRVal; int nSubs = 1; if(subRVal is TokenRValList) { nSubs = ((TokenRValList)subRVal).nItems; subRVal = ((TokenRValList)subRVal).rVal; } if(nSubs != nArgs) { ErrorMsg(lVal, "index property requires " + nArgs + " subscript(s)"); return null; } CompValu[] subCompValus = new CompValu[nArgs]; for(int i = 0; i < nArgs; i++) { subCompValus[i] = GenerateFromRVal(subRVal); subRVal = (TokenRVal)subRVal.nextToken; } return subCompValus; } /** * @brief using 'base' within a script-defined instance method to refer to an instance field/method * of the class being extended. */ private CompValu GenerateFromLValBaseField(TokenLValBaseField baseField, TokenType[] argsig) { string fieldName = baseField.fieldName.val; TokenDeclSDType sdtDecl = curDeclFunc.sdtClass; if((sdtDecl == null) || ((curDeclFunc.sdtFlags & ScriptReduce.SDT_STATIC) != 0)) { ErrorMsg(baseField, "cannot use 'base' outside instance method body"); return new CompValuVoid(baseField); } if(!IsSDTInstMethod()) { ErrorMsg(baseField, "cannot access instance member of base class from static method"); return new CompValuVoid(baseField); } TokenDeclVar declVar = FindThisMember(sdtDecl.extends, baseField.fieldName, argsig); if(declVar != null) { CheckAccess(declVar, baseField.fieldName); TokenType baseType = declVar.sdtClass.MakeRefToken(baseField); CompValu basePtr = new CompValuArg(baseType, 0); return AccessInstanceMember(declVar, basePtr, baseField, true); } ErrorMsg(baseField, "no member " + fieldName + ArgSigString(argsig) + " rootward of " + sdtDecl.longName.val); return new CompValuVoid(baseField); } /** * @brief We have an L-value token that is an instance field/method within a struct. * @returns a CompValu giving the type and location of the field/method in the struct. */ private CompValu GenerateFromLValIField(TokenLValIField lVal, TokenType[] argsig) { CompValu baseRVal = GenerateFromRVal(lVal.baseRVal); string fieldName = lVal.fieldName.val + ArgSigString(argsig); // Maybe they are accessing an instance field, method or property of a script-defined class. if(baseRVal.type is TokenTypeSDTypeClass) { TokenTypeSDTypeClass sdtType = (TokenTypeSDTypeClass)baseRVal.type; TokenDeclSDTypeClass sdtDecl = sdtType.decl; TokenDeclVar declVar = FindThisMember(sdtDecl, lVal.fieldName, argsig); if(declVar != null) { CheckAccess(declVar, lVal.fieldName); return AccessInstanceMember(declVar, baseRVal, lVal, false); } ErrorMsg(lVal.fieldName, "no member " + fieldName + " in class " + sdtDecl.longName.val); return new CompValuVoid(lVal.fieldName); } // Maybe they are accessing a method or property of a script-defined interface. if(baseRVal.type is TokenTypeSDTypeInterface) { TokenTypeSDTypeInterface sdtType = (TokenTypeSDTypeInterface)baseRVal.type; TokenDeclVar declVar = FindInterfaceMember(sdtType, lVal.fieldName, argsig, ref baseRVal); if(declVar != null) { return new CompValuIntfMember(declVar, baseRVal); } ErrorMsg(lVal.fieldName, "no member " + fieldName + " in interface " + sdtType.decl.longName.val); return new CompValuVoid(lVal.fieldName); } // Since we only have a few built-in types with fields, just pound them out. if(baseRVal.type is TokenTypeArray) { // no arguments, no parentheses, just the field name, returning integer // but internally, it is a call to a method() if(fieldName == "count") { return new CompValuIntInstROProp(tokenTypeInt, baseRVal, arrayCountMethodInfo); } // no arguments but with the parentheses, returning void if(fieldName == "clear()") { return new CompValuIntInstMeth(XMR_Array.clearDelegate, baseRVal, arrayClearMethodInfo); } // single integer argument, returning an object if(fieldName == "index(integer)") { return new CompValuIntInstMeth(XMR_Array.indexDelegate, baseRVal, arrayIndexMethodInfo); } if(fieldName == "value(integer)") { return new CompValuIntInstMeth(XMR_Array.valueDelegate, baseRVal, arrayValueMethodInfo); } } if(baseRVal.type is TokenTypeRot) { FieldInfo fi = null; if(fieldName == "x") fi = rotationXFieldInfo; if(fieldName == "y") fi = rotationYFieldInfo; if(fieldName == "z") fi = rotationZFieldInfo; if(fieldName == "s") fi = rotationSFieldInfo; if(fi != null) { return new CompValuField(new TokenTypeFloat(lVal), baseRVal, fi); } } if(baseRVal.type is TokenTypeVec) { FieldInfo fi = null; if(fieldName == "x") fi = vectorXFieldInfo; if(fieldName == "y") fi = vectorYFieldInfo; if(fieldName == "z") fi = vectorZFieldInfo; if(fi != null) { return new CompValuField(new TokenTypeFloat(lVal), baseRVal, fi); } } ErrorMsg(lVal, "type " + baseRVal.type.ToString() + " does not define member " + fieldName); return baseRVal; } /** * @brief We have an L-value token that is a function, method or variable name. * @param lVal = name we are looking for * @param argsig = null: just look for name as a variable * else: look for name as a function/method being called with the given argument types * eg, "(string,integer,list)" * @returns a CompValu giving the type and location of the function, method or variable. */ private CompValu GenerateFromLValName(TokenLValName lVal, TokenType[] argsig) { // Look in variable stack then look for built-in constants and functions. TokenDeclVar var = FindNamedVar(lVal, argsig); if(var == null) { ErrorMsg(lVal, "undefined constant/function/variable " + lVal.name.val + ArgSigString(argsig)); return new CompValuVoid(lVal); } // Maybe it has an implied 'this.' on the front. if((var.sdtClass != null) && ((var.sdtFlags & ScriptReduce.SDT_STATIC) == 0)) { if(!IsSDTInstMethod()) { ErrorMsg(lVal, "cannot access instance member of class from static method"); return new CompValuVoid(lVal); } // Don't allow something such as: // // class A { // integer I; // class B { // Print () // { // llOwnerSay ("I=" + (string)I); <- access to I not allowed inside class B. // explicit reference required as we don't // have a valid reference to class A. // } // } // } // // But do allow something such as: // // class A { // integer I; // } // class B : A { // Print () // { // llOwnerSay ("I=" + (string)I); // } // } for(TokenDeclSDType c = curDeclFunc.sdtClass; c != var.sdtClass; c = c.extends) { if(c == null) { // our arg0 points to an instance of curDeclFunc.sdtClass, not var.sdtClass ErrorMsg(lVal, "cannot access instance member of outer class with implied 'this'"); break; } } CompValu thisCompValu = new CompValuArg(var.sdtClass.MakeRefToken(lVal), 0); return AccessInstanceMember(var, thisCompValu, lVal, false); } // It's a local variable, static field, global, constant, etc. return var.location; } /** * @brief Access a script-defined type's instance member * @param declVar = which member (field,method,property) to access * @param basePtr = points to particular object instance * @param ignoreVirt = true: access declVar's method directly; else: maybe use vTable * @returns where the field/method/property is located */ private CompValu AccessInstanceMember(TokenDeclVar declVar, CompValu basePtr, Token errorAt, bool ignoreVirt) { if((declVar.sdtFlags & ScriptReduce.SDT_STATIC) != 0) { ErrorMsg(errorAt, "non-static reference to static member " + declVar.name.val); return new CompValuVoid(declVar); } return new CompValuInstMember(declVar, basePtr, ignoreVirt); } /** * @brief we have an L-value token that is a static member within a struct. * @returns a CompValu giving the type and location of the member in the struct. */ private CompValu GenerateFromLValSField(TokenLValSField lVal, TokenType[] argsig) { TokenType stType = lVal.baseType; string fieldName = lVal.fieldName.val + ArgSigString(argsig); // Maybe they are accessing a static member of a script-defined class. if(stType is TokenTypeSDTypeClass) { TokenTypeSDTypeClass sdtType = (TokenTypeSDTypeClass)stType; TokenDeclVar declVar = FindThisMember(sdtType.decl, lVal.fieldName, argsig); if(declVar != null) { CheckAccess(declVar, lVal.fieldName); if((declVar.sdtFlags & ScriptReduce.SDT_STATIC) == 0) { ErrorMsg(lVal.fieldName, "static reference to non-static member " + fieldName); return new CompValuVoid(lVal.fieldName); } return declVar.location; } } ErrorMsg(lVal.fieldName, "no member " + fieldName + " in " + stType.ToString()); return new CompValuVoid(lVal.fieldName); } /** * @brief generate code from an RVal expression and return its type and where the result is stored. * For anything that has side-effects, statements are generated that perform the computation then * the result it put in a temp var and the temp var name is returned. * For anything without side-effects, they are returned as an equivalent sequence of Emits. * @param rVal = rVal token to be evaluated * @param argsig = null: not being used in an function/method context * else: string giving argument types, eg, "(string,integer,list,vector)" * that can be used to select among overloaded methods * @returns resultant type and location */ private CompValu GenerateFromRVal(TokenRVal rVal) { return GenerateFromRVal(rVal, null); } private CompValu GenerateFromRVal(TokenRVal rVal, TokenType[] argsig) { errorMessageToken = rVal; // Maybe the expression can be converted to a constant. bool didOne; try { do { didOne = false; rVal = rVal.TryComputeConstant(LookupBodyConstants, ref didOne); } while(didOne); } catch(Exception ex) { ErrorMsg(errorMessageToken, ex.Message); throw; } // Generate code for the computation and return resulting type and location. CompValu cVal = null; if(rVal is TokenRValAsnPost) cVal = GenerateFromRValAsnPost((TokenRValAsnPost)rVal); if(rVal is TokenRValAsnPre) cVal = GenerateFromRValAsnPre((TokenRValAsnPre)rVal); if(rVal is TokenRValCall) cVal = GenerateFromRValCall((TokenRValCall)rVal); if(rVal is TokenRValCast) cVal = GenerateFromRValCast((TokenRValCast)rVal); if(rVal is TokenRValCondExpr) cVal = GenerateFromRValCondExpr((TokenRValCondExpr)rVal); if(rVal is TokenRValConst) cVal = GenerateFromRValConst((TokenRValConst)rVal); if(rVal is TokenRValInitDef) cVal = GenerateFromRValInitDef((TokenRValInitDef)rVal); if(rVal is TokenRValIsType) cVal = GenerateFromRValIsType((TokenRValIsType)rVal); if(rVal is TokenRValList) cVal = GenerateFromRValList((TokenRValList)rVal); if(rVal is TokenRValNewArIni) cVal = GenerateFromRValNewArIni((TokenRValNewArIni)rVal); if(rVal is TokenRValOpBin) cVal = GenerateFromRValOpBin((TokenRValOpBin)rVal); if(rVal is TokenRValOpUn) cVal = GenerateFromRValOpUn((TokenRValOpUn)rVal); if(rVal is TokenRValParen) cVal = GenerateFromRValParen((TokenRValParen)rVal); if(rVal is TokenRValRot) cVal = GenerateFromRValRot((TokenRValRot)rVal); if(rVal is TokenRValThis) cVal = GenerateFromRValThis((TokenRValThis)rVal); if(rVal is TokenRValUndef) cVal = GenerateFromRValUndef((TokenRValUndef)rVal); if(rVal is TokenRValVec) cVal = GenerateFromRValVec((TokenRValVec)rVal); if(rVal is TokenLVal) cVal = GenerateFromLVal((TokenLVal)rVal, argsig); if(cVal == null) throw new Exception("bad rval class " + rVal.GetType().ToString()); // Sanity check. if(!youveAnError) { if(cVal.type == null) throw new Exception("cVal has no type " + cVal.GetType()); string cValType = cVal.type.ToString(); string rValType = rVal.GetRValType(this, argsig).ToString(); if(cValType == "bool") cValType = "integer"; if(rValType == "bool") rValType = "integer"; if(cValType != rValType) { throw new Exception("cVal.type " + cValType + " != rVal.type " + rValType + " (" + rVal.GetType().Name + " " + rVal.SrcLoc + ")"); } } return cVal; } /** * @brief compute the result of a binary operator (eg, add, subtract, multiply, lessthan) * @param token = binary operator token, includes the left and right operands * @returns where the resultant R-value is as something that doesn't have side effects */ private CompValu GenerateFromRValOpBin(TokenRValOpBin token) { CompValu left, right; string opcodeIndex = token.opcode.ToString(); // Comma operators are special, as they say to compute the left-hand value and // discard it, then compute the right-hand argument and that is the result. if(opcodeIndex == ",") { // Compute left-hand operand but throw away result. GenerateFromRVal(token.rValLeft); // Compute right-hand operand and that is the value of the expression. return GenerateFromRVal(token.rValRight); } // Simple overwriting assignments are their own special case, // as we want to cast the R-value to the type of the L-value. // And in the case of delegates, we want to use the arg signature // of the delegate to select which overloaded method to use. if(opcodeIndex == "=") { if(!(token.rValLeft is TokenLVal)) { ErrorMsg(token, "invalid L-value for ="); return GenerateFromRVal(token.rValLeft); } left = GenerateFromLVal((TokenLVal)token.rValLeft); right = Trivialize(GenerateFromRVal(token.rValRight, left.GetArgTypes()), token.rValRight); left.PopPre(this, token.rValLeft); right.PushVal(this, token.rValRight, left.type); // push (left.type)right left.PopPost(this, token.rValLeft); // pop to left return left; } // There are String.Concat() methods available for 2, 3 and 4 operands. // So see if we have a string concat op and optimize if so. if((opcodeIndex == "+") || ((opcodeIndex == "+=") && (token.rValLeft is TokenLVal) && (token.rValLeft.GetRValType(this, null) is TokenTypeStr))) { // We are adding something. Maybe it's a bunch of strings together. List scorvs = new List(); if(StringConcatOperands(token.rValLeft, token.rValRight, scorvs, token.opcode)) { // Evaluate all the operands, right-to-left on purpose per LSL scripting. int i; int n = scorvs.Count; CompValu[] scocvs = new CompValu[n]; for(i = n; --i >= 0;) { scocvs[i] = GenerateFromRVal(scorvs[i]); if(i > 0) scocvs[i] = Trivialize(scocvs[i], scorvs[i]); } /* * Figure out where to put the result. * A temp if '+', or back in original L-value if '+='. */ CompValu retcv; if(opcodeIndex == "+") { retcv = new CompValuTemp(new TokenTypeStr(token.opcode), this); } else { retcv = GenerateFromLVal((TokenLVal)token.rValLeft); } retcv.PopPre(this, token); // Call the String.Concat() methods, passing operands in left-to-right order. // Force a cast to string (retcv.type) for each operand. ++i; scocvs[i].PushVal(this, scorvs[i], retcv.type); while(i + 3 < n) { ++i; scocvs[i].PushVal(this, scorvs[i], retcv.type); ++i; scocvs[i].PushVal(this, scorvs[i], retcv.type); ++i; scocvs[i].PushVal(this, scorvs[i], retcv.type); ilGen.Emit(scorvs[i], OpCodes.Call, stringConcat4MethodInfo); } if(i + 2 < n) { ++i; scocvs[i].PushVal(this, scorvs[i], retcv.type); ++i; scocvs[i].PushVal(this, scorvs[i], retcv.type); ilGen.Emit(scorvs[i], OpCodes.Call, stringConcat3MethodInfo); } if(i + 1 < n) { ++i; scocvs[i].PushVal(this, scorvs[i], retcv.type); ilGen.Emit(scorvs[i], OpCodes.Call, stringConcat2MethodInfo); } // Put the result where we want it and return where we put it. retcv.PopPost(this, token); return retcv; } } // If "&&&", it is a short-circuiting AND. // Compute left-hand operand and if true, compute right-hand operand. if(opcodeIndex == "&&&") { bool leftVal, rightVal; left = GenerateFromRVal(token.rValLeft); if(!IsConstBoolExpr(left, out leftVal)) { ScriptMyLabel falseLabel = ilGen.DefineLabel("ssandfalse"); left.PushVal(this, tokenTypeBool); ilGen.Emit(token, OpCodes.Brfalse, falseLabel); right = GenerateFromRVal(token.rValRight); if(!IsConstBoolExpr(right, out rightVal)) { right.PushVal(this, tokenTypeBool); goto donessand; } if(!rightVal) { ilGen.MarkLabel(falseLabel); return new CompValuInteger(new TokenTypeInt(token.rValLeft), 0); } ilGen.Emit(token, OpCodes.Ldc_I4_1); donessand: ScriptMyLabel doneLabel = ilGen.DefineLabel("ssanddone"); ilGen.Emit(token, OpCodes.Br, doneLabel); ilGen.MarkLabel(falseLabel); ilGen.Emit(token, OpCodes.Ldc_I4_0); ilGen.MarkLabel(doneLabel); CompValuTemp retRVal = new CompValuTemp(new TokenTypeInt(token), this); retRVal.Pop(this, token); return retRVal; } if(!leftVal) { return new CompValuInteger(new TokenTypeInt(token.rValLeft), 0); } right = GenerateFromRVal(token.rValRight); if(!IsConstBoolExpr(right, out rightVal)) { right.PushVal(this, tokenTypeBool); CompValuTemp retRVal = new CompValuTemp(new TokenTypeInt(token), this); retRVal.Pop(this, token); return retRVal; } return new CompValuInteger(new TokenTypeInt(token), rightVal ? 1 : 0); } // If "|||", it is a short-circuiting OR. // Compute left-hand operand and if false, compute right-hand operand. if(opcodeIndex == "|||") { bool leftVal, rightVal; left = GenerateFromRVal(token.rValLeft); if(!IsConstBoolExpr(left, out leftVal)) { ScriptMyLabel trueLabel = ilGen.DefineLabel("ssortrue"); left.PushVal(this, tokenTypeBool); ilGen.Emit(token, OpCodes.Brtrue, trueLabel); right = GenerateFromRVal(token.rValRight); if(!IsConstBoolExpr(right, out rightVal)) { right.PushVal(this, tokenTypeBool); goto donessor; } if(rightVal) { ilGen.MarkLabel(trueLabel); return new CompValuInteger(new TokenTypeInt(token.rValLeft), 1); } ilGen.Emit(token, OpCodes.Ldc_I4_0); donessor: ScriptMyLabel doneLabel = ilGen.DefineLabel("ssanddone"); ilGen.Emit(token, OpCodes.Br, doneLabel); ilGen.MarkLabel(trueLabel); ilGen.Emit(token, OpCodes.Ldc_I4_1); ilGen.MarkLabel(doneLabel); CompValuTemp retRVal = new CompValuTemp(new TokenTypeInt(token), this); retRVal.Pop(this, token); return retRVal; } if(leftVal) { return new CompValuInteger(new TokenTypeInt(token.rValLeft), 1); } right = GenerateFromRVal(token.rValRight); if(!IsConstBoolExpr(right, out rightVal)) { right.PushVal(this, tokenTypeBool); CompValuTemp retRVal = new CompValuTemp(new TokenTypeInt(token), this); retRVal.Pop(this, token); return retRVal; } return new CompValuInteger(new TokenTypeInt(token), rightVal ? 1 : 0); } // Computation of some sort, compute right-hand operand value then left-hand value // because LSL is supposed to be right-to-left evaluation. right = Trivialize(GenerateFromRVal(token.rValRight), token.rValRight); // If left is a script-defined class and there is a method with the operator's name, // convert this to a call to that method with the right value as its single parameter. // Except don't if the right value is 'undef' so they can always compare to undef. TokenType leftType = token.rValLeft.GetRValType(this, null); if((leftType is TokenTypeSDTypeClass) && !(right.type is TokenTypeUndef)) { TokenTypeSDTypeClass sdtType = (TokenTypeSDTypeClass)leftType; TokenDeclSDTypeClass sdtDecl = sdtType.decl; TokenType[] argsig = new TokenType[] { right.type }; TokenName funcName = new TokenName(token.opcode, "$op" + opcodeIndex); TokenDeclVar declFunc = FindThisMember(sdtDecl, funcName, argsig); if(declFunc != null) { CheckAccess(declFunc, funcName); left = GenerateFromRVal(token.rValLeft); CompValu method = AccessInstanceMember(declFunc, left, token, false); CompValu[] argRVals = new CompValu[] { right }; return GenerateACall(method, argRVals, token); } } // Formulate key string for binOpStrings = (lefttype)(operator)(righttype) string leftIndex = leftType.ToString(); string rightIndex = right.type.ToString(); string key = leftIndex + opcodeIndex + rightIndex; // If that key exists in table, then the operation is defined between those types // ... and it produces an R-value of type as given in the table. BinOpStr binOpStr; if(BinOpStr.defined.TryGetValue(key, out binOpStr)) { // If table contained an explicit assignment type like +=, output the statement without // casting the L-value, then return the L-value as the resultant value. // // Make sure we don't include comparisons (such as ==, >=, etc). // Nothing like +=, -=, %=, etc, generate a boolean, only the comparisons. if((binOpStr.outtype != typeof(bool)) && opcodeIndex.EndsWith("=") && (opcodeIndex != "!=")) { if(!(token.rValLeft is TokenLVal)) { ErrorMsg(token.rValLeft, "invalid L-value"); return GenerateFromRVal(token.rValLeft); } left = GenerateFromLVal((TokenLVal)token.rValLeft); binOpStr.emitBO(this, token, left, right, left); return left; } // It's of the form left binop right. // Compute left, perform operation then put result in a temp. left = GenerateFromRVal(token.rValLeft); CompValu retRVal = new CompValuTemp(TokenType.FromSysType(token.opcode, binOpStr.outtype), this); binOpStr.emitBO(this, token, left, right, retRVal); return retRVal; } // Nothing in the table, check for comparing object pointers because of the myriad of types possible. // This will compare list pointers, null pointers, script-defined type pointers, array pointers, etc. // It will show equal iff the memory addresses are equal and that is good enough. if(!leftType.ToSysType().IsValueType && !right.type.ToSysType().IsValueType && ((opcodeIndex == "==") || (opcodeIndex == "!="))) { CompValuTemp retRVal = new CompValuTemp(new TokenTypeInt(token), this); left = GenerateFromRVal(token.rValLeft); left.PushVal(this, token.rValLeft); right.PushVal(this, token.rValRight); ilGen.Emit(token, OpCodes.Ceq); if(opcodeIndex == "!=") { ilGen.Emit(token, OpCodes.Ldc_I4_1); ilGen.Emit(token, OpCodes.Xor); } retRVal.Pop(this, token); return retRVal; } // If the opcode ends with "=", it may be something like "+=". // So look up the key as if we didn't have the "=" to tell us if the operation is legal. // Also, the binary operation's output type must be the same as the L-value type. // Likewise, integer += float not allowed because result is float, but float += integer is ok. if(opcodeIndex.EndsWith("=")) { key = leftIndex + opcodeIndex.Substring(0, opcodeIndex.Length - 1) + rightIndex; if(BinOpStr.defined.TryGetValue(key, out binOpStr)) { if(!(token.rValLeft is TokenLVal)) { ErrorMsg(token, "invalid L-value for ="); return GenerateFromRVal(token.rValLeft); } if(!binOpStr.rmwOK) { ErrorMsg(token, "= not allowed: " + leftIndex + " " + opcodeIndex + " " + rightIndex); return new CompValuVoid(token); } // Now we know for something like %= that left%right is legal for the types given. left = GenerateFromLVal((TokenLVal)token.rValLeft); if(binOpStr.outtype == leftType.ToSysType()) { binOpStr.emitBO(this, token, left, right, left); } else { CompValu temp = new CompValuTemp(TokenType.FromSysType(token, binOpStr.outtype), this); binOpStr.emitBO(this, token, left, right, temp); left.PopPre(this, token); temp.PushVal(this, token, leftType); left.PopPost(this, token); } return left; } } // Can't find it, oh well. ErrorMsg(token, "op not defined: " + leftIndex + " " + opcodeIndex + " " + rightIndex); return new CompValuVoid(token); } /** * @brief Queue the given operands to the end of the scos list. * If it can be broken down into more string concat operands, do so. * Otherwise, just push it as one operand. * @param leftRVal = left-hand operand of a '+' operation * @param rightRVal = right-hand operand of a '+' operation * @param scos = left-to-right list of operands for the string concat so far * @param addop = the add operator token (either '+' or '+=') * @returns false: neither operand is a string, nothing added to scos * true: scos = updated with leftRVal then rightRVal added onto the end, possibly broken down further */ private bool StringConcatOperands(TokenRVal leftRVal, TokenRVal rightRVal, List scos, TokenKw addop) { /* * If neither operand is a string (eg, float+integer), then the result isn't going to be a string. */ TokenType leftType = leftRVal.GetRValType(this, null); TokenType rightType = rightRVal.GetRValType(this, null); if(!(leftType is TokenTypeStr) && !(rightType is TokenTypeStr)) return false; // Also, list+string => list so reject that too. // Also, string+list => list so reject that too. if(leftType is TokenTypeList) return false; if(rightType is TokenTypeList) return false; // Append values to the end of the list in left-to-right order. // If value is formed from a something+something => string, // push them as separate values, otherwise push as one value. StringConcatOperand(leftType, leftRVal, scos); StringConcatOperand(rightType, rightRVal, scos); // Maybe constant strings can be concatted. try { int len; while(((len = scos.Count) >= 2) && ((leftRVal = scos[len - 2]) is TokenRValConst) && ((rightRVal = scos[len - 1]) is TokenRValConst)) { object sum = addop.binOpConst(((TokenRValConst)leftRVal).val, ((TokenRValConst)rightRVal).val); scos[len - 2] = new TokenRValConst(addop, sum); scos.RemoveAt(len - 1); } } catch { } // We pushed some string stuff. return true; } /** * @brief Queue the given operand to the end of the scos list. * If it can be broken down into more string concat operands, do so. * Otherwise, just push it as one operand. * @param type = rVal's resultant type * @param rVal = operand to examine * @param scos = left-to-right list of operands for the string concat so far * @returns with scos = updated with rVal added onto the end, possibly broken down further */ private void StringConcatOperand(TokenType type, TokenRVal rVal, List scos) { bool didOne; do { didOne = false; rVal = rVal.TryComputeConstant(LookupBodyConstants, ref didOne); } while(didOne); if(!(type is TokenTypeStr)) goto pushasis; if(!(rVal is TokenRValOpBin)) goto pushasis; TokenRValOpBin rValOpBin = (TokenRValOpBin)rVal; if(!(rValOpBin.opcode is TokenKwAdd)) goto pushasis; if(StringConcatOperands(rValOpBin.rValLeft, rValOpBin.rValRight, scos, rValOpBin.opcode)) return; pushasis: scos.Add(rVal); } /** * @brief compute the result of an unary operator * @param token = unary operator token, includes the operand * @returns where the resultant R-value is */ private CompValu GenerateFromRValOpUn(TokenRValOpUn token) { CompValu inRVal = GenerateFromRVal(token.rVal); // Script-defined types can define their own methods to handle unary operators. if(inRVal.type is TokenTypeSDTypeClass) { TokenTypeSDTypeClass sdtType = (TokenTypeSDTypeClass)inRVal.type; TokenDeclSDTypeClass sdtDecl = sdtType.decl; TokenName funcName = new TokenName(token.opcode, "$op" + token.opcode.ToString()); TokenDeclVar declFunc = FindThisMember(sdtDecl, funcName, zeroArgs); if(declFunc != null) { CheckAccess(declFunc, funcName); CompValu method = AccessInstanceMember(declFunc, inRVal, token, false); return GenerateACall(method, zeroCompValus, token); } } // Otherwise use the default. return UnOpGenerate(inRVal, token.opcode); } /** * @brief postfix operator -- this returns the type and location of the resultant value */ private CompValu GenerateFromRValAsnPost(TokenRValAsnPost asnPost) { CompValu lVal = GenerateFromLVal(asnPost.lVal); // Make up a temp to save original value in. CompValuTemp result = new CompValuTemp(lVal.type, this); // Prepare to pop incremented value back into variable being incremented. lVal.PopPre(this, asnPost.lVal); // Copy original value to temp and leave value on stack. lVal.PushVal(this, asnPost.lVal); ilGen.Emit(asnPost.lVal, OpCodes.Dup); result.Pop(this, asnPost.lVal); // Perform the ++/--. if((lVal.type is TokenTypeChar) || (lVal.type is TokenTypeInt)) { ilGen.Emit(asnPost, OpCodes.Ldc_I4_1); } else if(lVal.type is TokenTypeFloat) { ilGen.Emit(asnPost, OpCodes.Ldc_R4, 1.0f); } else { lVal.PopPost(this, asnPost.lVal); ErrorMsg(asnPost, "invalid type for " + asnPost.postfix.ToString()); return lVal; } switch(asnPost.postfix.ToString()) { case "++": { ilGen.Emit(asnPost, OpCodes.Add); break; } case "--": { ilGen.Emit(asnPost, OpCodes.Sub); break; } default: throw new Exception("unknown asnPost op"); } // Store new value in original variable. lVal.PopPost(this, asnPost.lVal); return result; } /** * @brief prefix operator -- this returns the type and location of the resultant value */ private CompValu GenerateFromRValAsnPre(TokenRValAsnPre asnPre) { CompValu lVal = GenerateFromLVal(asnPre.lVal); // Make up a temp to put result in. CompValuTemp result = new CompValuTemp(lVal.type, this); // Prepare to pop incremented value back into variable being incremented. lVal.PopPre(this, asnPre.lVal); // Push original value. lVal.PushVal(this, asnPre.lVal); // Perform the ++/--. if((lVal.type is TokenTypeChar) || (lVal.type is TokenTypeInt)) { ilGen.Emit(asnPre, OpCodes.Ldc_I4_1); } else if(lVal.type is TokenTypeFloat) { ilGen.Emit(asnPre, OpCodes.Ldc_R4, 1.0f); } else { lVal.PopPost(this, asnPre.lVal); ErrorMsg(asnPre, "invalid type for " + asnPre.prefix.ToString()); return lVal; } switch(asnPre.prefix.ToString()) { case "++": { ilGen.Emit(asnPre, OpCodes.Add); break; } case "--": { ilGen.Emit(asnPre, OpCodes.Sub); break; } default: throw new Exception("unknown asnPre op"); } // Store new value in temp variable, keeping new value on stack. ilGen.Emit(asnPre.lVal, OpCodes.Dup); result.Pop(this, asnPre.lVal); // Store new value in original variable. lVal.PopPost(this, asnPre.lVal); return result; } /** * @brief Generate code that calls a function or object's method. * @returns where the call's return value is stored (a TokenTypeVoid if void) */ private CompValu GenerateFromRValCall(TokenRValCall call) { CompValu method; CompValu[] argRVals; int i, nargs; TokenRVal arg; TokenType[] argTypes; // Compute the values of all the function's call arguments. // Save where the computation results are in the argRVals[] array. // Might as well build the argument signature from the argument types, too. nargs = call.nArgs; argRVals = new CompValu[nargs]; argTypes = new TokenType[nargs]; if(nargs > 0) { i = 0; for(arg = call.args; arg != null; arg = (TokenRVal)arg.nextToken) { argRVals[i] = GenerateFromRVal(arg); argTypes[i] = argRVals[i].type; i++; } } // Get function/method's entrypoint that matches the call argument types. method = GenerateFromRVal(call.meth, argTypes); if(method == null) return null; return GenerateACall(method, argRVals, call); } /** * @brief Generate call to a function/method. * @param method = function/method being called * @param argVRVals = its call parameters (zero length if none) * @param call = where in source code call is being made from (for error messages) * @returns type and location of return value (CompValuVoid if none) */ private CompValu GenerateACall(CompValu method, CompValu[] argRVals, Token call) { CompValuTemp result; int i, nArgs; TokenType retType; TokenType[] argTypes; // Must be some kind of callable. retType = method.GetRetType(); // TokenTypeVoid if void; null means a variable if(retType == null) { ErrorMsg(call, "must be a delegate, function or method"); return new CompValuVoid(call); } // Get a location for return value. if(retType is TokenTypeVoid) { result = new CompValuVoid(call); } else { result = new CompValuTemp(retType, this); } // Make sure all arguments are trivial, ie, don't involve their own call labels. // For any that aren't, output code to calculate the arg and put in a temporary. nArgs = argRVals.Length; for(i = 0; i < nArgs; i++) { if(!argRVals[i].IsReadTrivial(this, call)) { argRVals[i] = Trivialize(argRVals[i], call); } } // Inline functions know how to generate their own call. if(method is CompValuInline) { CompValuInline inline = (CompValuInline)method; inline.declInline.CodeGen(this, call, result, argRVals); return result; } // Push whatever the function/method needs as a this argument, if anything. method.CallPre(this, call); // Push the script-visible args, left-to-right. argTypes = method.GetArgTypes(); for(i = 0; i < nArgs; i++) { if(argTypes == null) { argRVals[i].PushVal(this, call); } else { argRVals[i].PushVal(this, call, argTypes[i]); } } // Now output call instruction. method.CallPost(this, call); // Deal with the return value (if any), by putting it in 'result'. result.Pop(this, call, retType); return result; } /** * @brief This is needed to avoid nesting call labels around non-trivial properties. * It should be used for the second (and later) operands. * Note that a 'call' is considered an operator, so all arguments of a call * should be trivialized, but the method itself does not need to be. */ public CompValu Trivialize(CompValu operand, Token errorAt) { if(operand.IsReadTrivial(this, errorAt)) return operand; CompValuTemp temp = new CompValuTemp(operand.type, this); operand.PushVal(this, errorAt); temp.Pop(this, errorAt); return temp; } /** * @brief Generate code that casts a value to a particular type. * @returns where the result of the conversion is stored. */ private CompValu GenerateFromRValCast(TokenRValCast cast) { // If casting to a delegate type, use the argment signature // of the delegate to help select the function/method, eg, // '(delegate string(integer))ToString' // will select 'string ToString(integer x)' // instaead of 'string ToString(float x)' or anything else TokenType[] argsig = null; TokenType outType = cast.castTo; if(outType is TokenTypeSDTypeDelegate) { argsig = ((TokenTypeSDTypeDelegate)outType).decl.GetArgTypes(); } // Generate the value that is being cast. // If the value is already the requested type, just use it as is. CompValu inRVal = GenerateFromRVal(cast.rVal, argsig); if(inRVal.type == outType) return inRVal; // Different type, generate casting code, putting the result in a temp of the output type. CompValu outRVal = new CompValuTemp(outType, this); outRVal.PopPre(this, cast); inRVal.PushVal(this, cast, outType, true); outRVal.PopPost(this, cast); return outRVal; } /** * @brief Compute conditional expression value. * @returns type and location of computed value. */ private CompValu GenerateFromRValCondExpr(TokenRValCondExpr rValCondExpr) { bool condVal; CompValu condValu = GenerateFromRVal(rValCondExpr.condExpr); if(IsConstBoolExpr(condValu, out condVal)) { return GenerateFromRVal(condVal ? rValCondExpr.trueExpr : rValCondExpr.falseExpr); } ScriptMyLabel falseLabel = ilGen.DefineLabel("condexfalse"); ScriptMyLabel doneLabel = ilGen.DefineLabel("condexdone"); condValu.PushVal(this, rValCondExpr.condExpr, tokenTypeBool); ilGen.Emit(rValCondExpr, OpCodes.Brfalse, falseLabel); CompValu trueValu = GenerateFromRVal(rValCondExpr.trueExpr); trueValu.PushVal(this, rValCondExpr.trueExpr); ilGen.Emit(rValCondExpr, OpCodes.Br, doneLabel); ilGen.MarkLabel(falseLabel); CompValu falseValu = GenerateFromRVal(rValCondExpr.falseExpr); falseValu.PushVal(this, rValCondExpr.falseExpr); if(trueValu.type.GetType() != falseValu.type.GetType()) { ErrorMsg(rValCondExpr, "? operands " + trueValu.type.ToString() + " : " + falseValu.type.ToString() + " must be of same type"); } ilGen.MarkLabel(doneLabel); CompValuTemp retRVal = new CompValuTemp(trueValu.type, this); retRVal.Pop(this, rValCondExpr); return retRVal; } /** * @brief Constant in the script somewhere * @returns where the constants value is stored */ private CompValu GenerateFromRValConst(TokenRValConst rValConst) { switch(rValConst.type) { case TokenRValConstType.CHAR: { return new CompValuChar(new TokenTypeChar(rValConst), (char)(rValConst.val)); } case TokenRValConstType.FLOAT: { return new CompValuFloat(new TokenTypeFloat(rValConst), (double)(rValConst.val)); } case TokenRValConstType.INT: { return new CompValuInteger(new TokenTypeInt(rValConst), (int)(rValConst.val)); } case TokenRValConstType.KEY: { return new CompValuString(new TokenTypeKey(rValConst), (string)(rValConst.val)); } case TokenRValConstType.STRING: { return new CompValuString(new TokenTypeStr(rValConst), (string)(rValConst.val)); } } throw new Exception("unknown constant type " + rValConst.val.GetType()); } /** * @brief generate a new list object * @param rValList = an rVal to create it from */ private CompValu GenerateFromRValList(TokenRValList rValList) { // Compute all element values and remember where we put them. // Do it right-to-left as customary for LSL scripts. int i = 0; TokenRVal lastRVal = null; for(TokenRVal val = rValList.rVal; val != null; val = (TokenRVal)val.nextToken) { i++; val.prevToken = lastRVal; lastRVal = val; } CompValu[] vals = new CompValu[i]; for(TokenRVal val = lastRVal; val != null; val = (TokenRVal)val.prevToken) { vals[--i] = GenerateFromRVal(val); } // This is the temp that will hold the created list. CompValuTemp newList = new CompValuTemp(new TokenTypeList(rValList.rVal), this); // Create a temp object[] array to hold all the initial values. ilGen.Emit(rValList, OpCodes.Ldc_I4, rValList.nItems); ilGen.Emit(rValList, OpCodes.Newarr, typeof(object)); // Populate the array. i = 0; for(TokenRVal val = rValList.rVal; val != null; val = (TokenRVal)val.nextToken) { // Get pointer to temp array object. ilGen.Emit(rValList, OpCodes.Dup); // Get index in that array. ilGen.Emit(rValList, OpCodes.Ldc_I4, i); // Store initialization value in array location. // However, floats and ints need to be converted to LSL_Float and LSL_Integer, // or things like llSetPayPrice() will puque when they try to cast the elements // to LSL_Float or LSL_Integer. Likewise with string/LSL_String. // // Maybe it's already LSL-boxed so we don't do anything with it except make sure // it is an object, not a struct. CompValu eRVal = vals[i++]; eRVal.PushVal(this, val); if(eRVal.type.ToLSLWrapType() == null) { if(eRVal.type is TokenTypeFloat) { ilGen.Emit(val, OpCodes.Newobj, lslFloatConstructorInfo); ilGen.Emit(val, OpCodes.Box, typeof(LSL_Float)); } else if(eRVal.type is TokenTypeInt) { ilGen.Emit(val, OpCodes.Newobj, lslIntegerConstructorInfo); ilGen.Emit(val, OpCodes.Box, typeof(LSL_Integer)); } else if((eRVal.type is TokenTypeKey) || (eRVal.type is TokenTypeStr)) { ilGen.Emit(val, OpCodes.Newobj, lslStringConstructorInfo); ilGen.Emit(val, OpCodes.Box, typeof(LSL_String)); } else if(eRVal.type.ToSysType().IsValueType) { ilGen.Emit(val, OpCodes.Box, eRVal.type.ToSysType()); } } else if(eRVal.type.ToLSLWrapType().IsValueType) { // Convert the LSL value structs to an object of the LSL-boxed type ilGen.Emit(val, OpCodes.Box, eRVal.type.ToLSLWrapType()); } ilGen.Emit(val, OpCodes.Stelem, typeof(object)); } // Create new list object from temp initial value array (whose ref is still on the stack). ilGen.Emit(rValList, OpCodes.Newobj, lslListConstructorInfo); newList.Pop(this, rValList); return newList; } /** * @brief New array allocation with initializer expressions. */ private CompValu GenerateFromRValNewArIni(TokenRValNewArIni rValNewArIni) { return MallocAndInitArray(rValNewArIni.arrayType, rValNewArIni.valueList); } /** * @brief Mallocate and initialize an array from its initialization list. * @param arrayType = type of the array to be allocated and initialized * @param values = initialization value list used to size and initialize the array. * @returns memory location of the resultant initialized array. */ private CompValu MallocAndInitArray(TokenType arrayType, TokenList values) { TokenDeclSDTypeClass arrayDecl = ((TokenTypeSDTypeClass)arrayType).decl; TokenType eleType = arrayDecl.arrayOfType; int rank = arrayDecl.arrayOfRank; // Get size of each of the dimensions by scanning the initialization value list int[] dimSizes = new int[rank]; FillInDimSizes(dimSizes, 0, rank, values); // Figure out where the array's $new() method is TokenType[] newargsig = new TokenType[rank]; for(int k = 0; k < rank; k++) { newargsig[k] = tokenTypeInt; } TokenDeclVar newMeth = FindThisMember(arrayDecl, new TokenName(null, "$new"), newargsig); // Output a call to malloc the array with all default values // array = ArrayType.$new (dimSizes[0], dimSizes[1], ...) CompValuTemp array = new CompValuTemp(arrayType, this); PushXMRInst(); for(int k = 0; k < rank; k++) { ilGen.Emit(values, OpCodes.Ldc_I4, dimSizes[k]); } ilGen.Emit(values, OpCodes.Call, newMeth.ilGen); array.Pop(this, arrayType); // Figure out where the array's Set() method is TokenType[] setargsig = new TokenType[rank + 1]; for(int k = 0; k < rank; k++) { setargsig[k] = tokenTypeInt; } setargsig[rank] = eleType; TokenDeclVar setMeth = FindThisMember(arrayDecl, new TokenName(null, "Set"), setargsig); // Fill in the array with the initializer values FillInInitVals(array, setMeth, dimSizes, 0, rank, values, eleType); // The array is our resultant value return array; } /** * @brief Compute an array's dimensions given its initialization value list * @param dimSizes = filled in with array's dimensions * @param dimNo = what dimension the 'values' list applies to * @param rank = total number of dimensions of the array * @param values = list of values to initialize the array's 'dimNo' dimension with * @returns with dimSizes[dimNo..rank-1] filled in */ private static void FillInDimSizes(int[] dimSizes, int dimNo, int rank, TokenList values) { // the size of a dimension is the largest number of initializer elements at this level // for dimNo 0, this is the number of elements in the top-level list if(dimSizes[dimNo] < values.tl.Count) dimSizes[dimNo] = values.tl.Count; // see if there is another dimension to calculate if(++dimNo < rank) { // its size is the size of the largest initializer list at the next inner level foreach(Token val in values.tl) { if(val is TokenList) { TokenList subvals = (TokenList)val; FillInDimSizes(dimSizes, dimNo, rank, subvals); } } } } /** * @brief Output code to fill in array's initialization values * @param array = array to be filled in * @param setMeth = the array's Set() method * @param subscripts = holds subscripts being built * @param dimNo = which dimension the 'values' are for * @param values = list of initialization values for dimension 'dimNo' * @param rank = number of dimensions of 'array' * @param values = list of values to initialize the array's 'dimNo' dimension with * @param eleType = the element's type * @returns with code emitted to initialize array's [subscripts[0], ..., subscripts[dimNo-1], *, *, ...] * dimNo and up completely filled ---^ */ private void FillInInitVals(CompValu array, TokenDeclVar setMeth, int[] subscripts, int dimNo, int rank, TokenList values, TokenType eleType) { subscripts[dimNo] = 0; foreach(Token val in values.tl) { CompValu initValue = null; // If it is a sublist, process it. // If we don't have enough subscripts yet, hopefully that sublist will have enough. // If we already have enough subscripts, then that sublist can be for an element of this supposedly jagged array. if(val is TokenList) { TokenList sublist = (TokenList)val; if(dimNo + 1 < rank) { // We don't have enough subscripts yet, hopefully the sublist has the rest. FillInInitVals(array, setMeth, subscripts, dimNo + 1, rank, sublist, eleType); } else if((eleType is TokenTypeSDTypeClass) && (((TokenTypeSDTypeClass)eleType).decl.arrayOfType == null)) { // If we aren't a jagged array either, we can't do anything with the sublist. ErrorMsg(val, "too many brace levels"); } else { // We are a jagged array, so malloc a subarray and initialize it with the sublist. // Then we can use that subarray to fill this array's element. initValue = MallocAndInitArray(eleType, sublist); } } // If it is a value expression, then output code to compute the value. if(val is TokenRVal) { if(dimNo + 1 < rank) { ErrorMsg((Token)val, "not enough brace levels"); } else { initValue = GenerateFromRVal((TokenRVal)val); } } // If there is an initValue, output "array.Set (subscript[0], subscript[1], ..., initValue)" if(initValue != null) { array.PushVal(this, val); for(int i = 0; i <= dimNo; i++) { ilGen.Emit(val, OpCodes.Ldc_I4, subscripts[i]); } initValue.PushVal(this, val, eleType); ilGen.Emit(val, OpCodes.Call, setMeth.ilGen); } // That subscript is processed one way or another, on to the next. subscripts[dimNo]++; } } /** * @brief parenthesized expression * @returns type and location of the result of the computation. */ private CompValu GenerateFromRValParen(TokenRValParen rValParen) { return GenerateFromRVal(rValParen.rVal); } /** * @brief create a rotation object from the x,y,z,w value expressions. */ private CompValu GenerateFromRValRot(TokenRValRot rValRot) { CompValu xRVal, yRVal, zRVal, wRVal; xRVal = Trivialize(GenerateFromRVal(rValRot.xRVal), rValRot); yRVal = Trivialize(GenerateFromRVal(rValRot.yRVal), rValRot); zRVal = Trivialize(GenerateFromRVal(rValRot.zRVal), rValRot); wRVal = Trivialize(GenerateFromRVal(rValRot.wRVal), rValRot); return new CompValuRot(new TokenTypeRot(rValRot), xRVal, yRVal, zRVal, wRVal); } /** * @brief Using 'this' as a pointer to the current script-defined instance object. * The value is located in arg #0 of the current instance method. */ private CompValu GenerateFromRValThis(TokenRValThis zhis) { if(!IsSDTInstMethod()) { ErrorMsg(zhis, "cannot access instance member of class from static method"); return new CompValuVoid(zhis); } return new CompValuArg(curDeclFunc.sdtClass.MakeRefToken(zhis), 0); } /** * @brief 'undefined' constant. * If this constant gets written to an array element, it will delete that element from the array. * If the script retrieves an element by key that is not defined, it will get this value. * This value can be stored in and retrieved from variables of type 'object' or script-defined classes. * It is a runtime error to cast this value to any other type, eg, * we don't allow list or string variables to be null pointers. */ private CompValu GenerateFromRValUndef(TokenRValUndef rValUndef) { return new CompValuNull(new TokenTypeUndef(rValUndef)); } /** * @brief create a vector object from the x,y,z value expressions. */ private CompValu GenerateFromRValVec(TokenRValVec rValVec) { CompValu xRVal, yRVal, zRVal; xRVal = Trivialize(GenerateFromRVal(rValVec.xRVal), rValVec); yRVal = Trivialize(GenerateFromRVal(rValVec.yRVal), rValVec); zRVal = Trivialize(GenerateFromRVal(rValVec.zRVal), rValVec); return new CompValuVec(new TokenTypeVec(rValVec), xRVal, yRVal, zRVal); } /** * @brief Generate code to get the default initialization value for a variable. */ private CompValu GenerateFromRValInitDef(TokenRValInitDef rValInitDef) { TokenType type = rValInitDef.type; if(type is TokenTypeChar) { return new CompValuChar(type, (char)0); } if(type is TokenTypeRot) { CompValuFloat x = new CompValuFloat(type, ScriptBaseClass.ZERO_ROTATION.x); CompValuFloat y = new CompValuFloat(type, ScriptBaseClass.ZERO_ROTATION.y); CompValuFloat z = new CompValuFloat(type, ScriptBaseClass.ZERO_ROTATION.z); CompValuFloat s = new CompValuFloat(type, ScriptBaseClass.ZERO_ROTATION.s); return new CompValuRot(type, x, y, z, s); } if((type is TokenTypeKey) || (type is TokenTypeStr)) { return new CompValuString(type, ""); } if(type is TokenTypeVec) { CompValuFloat x = new CompValuFloat(type, ScriptBaseClass.ZERO_VECTOR.x); CompValuFloat y = new CompValuFloat(type, ScriptBaseClass.ZERO_VECTOR.y); CompValuFloat z = new CompValuFloat(type, ScriptBaseClass.ZERO_VECTOR.z); return new CompValuVec(type, x, y, z); } if(type is TokenTypeInt) { return new CompValuInteger(type, 0); } if(type is TokenTypeFloat) { return new CompValuFloat(type, 0); } if(type is TokenTypeVoid) { return new CompValuVoid(type); } // Default for 'object' type is 'undef'. // Likewise for script-defined classes and interfaces. if((type is TokenTypeObject) || (type is TokenTypeSDTypeClass) || (type is TokenTypeSDTypeDelegate) || (type is TokenTypeSDTypeInterface) || (type is TokenTypeExc)) { return new CompValuNull(type); } // array and list CompValuTemp temp = new CompValuTemp(type, this); PushDefaultValue(type); temp.Pop(this, rValInitDef, type); return temp; } /** * @brief Generate code to process an is expression, and produce a boolean value. */ private CompValu GenerateFromRValIsType(TokenRValIsType rValIsType) { // Expression we want to know the type of. CompValu val = GenerateFromRVal(rValIsType.rValExp); // Pass it in to top-level type expression decoder. return GenerateFromTypeExp(val, rValIsType.typeExp); } /** * @brief See if the type of the given value matches the type expression. * @param val = where the value to be evaluated is stored * @param typeExp = script tokens representing type expression * @returns location where the boolean result is stored */ private CompValu GenerateFromTypeExp(CompValu val, TokenTypeExp typeExp) { if(typeExp is TokenTypeExpBinOp) { CompValu left = GenerateFromTypeExp(val, ((TokenTypeExpBinOp)typeExp).leftOp); CompValu right = GenerateFromTypeExp(val, ((TokenTypeExpBinOp)typeExp).rightOp); CompValuTemp result = new CompValuTemp(tokenTypeBool, this); Token op = ((TokenTypeExpBinOp)typeExp).binOp; left.PushVal(this, ((TokenTypeExpBinOp)typeExp).leftOp); right.PushVal(this, ((TokenTypeExpBinOp)typeExp).rightOp); if(op is TokenKwAnd) { ilGen.Emit(typeExp, OpCodes.And); } else if(op is TokenKwOr) { ilGen.Emit(typeExp, OpCodes.Or); } else { throw new Exception("unknown TokenTypeExpBinOp " + op.GetType()); } result.Pop(this, typeExp); return result; } if(typeExp is TokenTypeExpNot) { CompValu interm = GenerateFromTypeExp(val, ((TokenTypeExpNot)typeExp).typeExp); CompValuTemp result = new CompValuTemp(tokenTypeBool, this); interm.PushVal(this, ((TokenTypeExpNot)typeExp).typeExp, tokenTypeBool); ilGen.Emit(typeExp, OpCodes.Ldc_I4_1); ilGen.Emit(typeExp, OpCodes.Xor); result.Pop(this, typeExp); return result; } if(typeExp is TokenTypeExpPar) { return GenerateFromTypeExp(val, ((TokenTypeExpPar)typeExp).typeExp); } if(typeExp is TokenTypeExpType) { CompValuTemp result = new CompValuTemp(tokenTypeBool, this); val.PushVal(this, typeExp); ilGen.Emit(typeExp, OpCodes.Isinst, ((TokenTypeExpType)typeExp).typeToken.ToSysType()); ilGen.Emit(typeExp, OpCodes.Ldnull); ilGen.Emit(typeExp, OpCodes.Ceq); ilGen.Emit(typeExp, OpCodes.Ldc_I4_1); ilGen.Emit(typeExp, OpCodes.Xor); result.Pop(this, typeExp); return result; } if(typeExp is TokenTypeExpUndef) { CompValuTemp result = new CompValuTemp(tokenTypeBool, this); val.PushVal(this, typeExp); ilGen.Emit(typeExp, OpCodes.Ldnull); ilGen.Emit(typeExp, OpCodes.Ceq); result.Pop(this, typeExp); return result; } throw new Exception("unknown TokenTypeExp type " + typeExp.GetType()); } /** * @brief Push the default (null) value for a particular variable * @param var = variable to get the default value for * @returns with value pushed on stack */ public void PushVarDefaultValue(TokenDeclVar var) { PushDefaultValue(var.type); } public void PushDefaultValue(TokenType type) { if(type is TokenTypeArray) { PushXMRInst(); // instance ilGen.Emit(type, OpCodes.Newobj, xmrArrayConstructorInfo); return; } if(type is TokenTypeChar) { ilGen.Emit(type, OpCodes.Ldc_I4_0); return; } if(type is TokenTypeList) { ilGen.Emit(type, OpCodes.Ldc_I4_0); ilGen.Emit(type, OpCodes.Newarr, typeof(object)); ilGen.Emit(type, OpCodes.Newobj, lslListConstructorInfo); return; } if(type is TokenTypeRot) { // Mono is tOO stOOpid to allow: ilGen.Emit (OpCodes.Ldsfld, zeroRotationFieldInfo); ilGen.Emit(type, OpCodes.Ldc_R8, ScriptBaseClass.ZERO_ROTATION.x); ilGen.Emit(type, OpCodes.Ldc_R8, ScriptBaseClass.ZERO_ROTATION.y); ilGen.Emit(type, OpCodes.Ldc_R8, ScriptBaseClass.ZERO_ROTATION.z); ilGen.Emit(type, OpCodes.Ldc_R8, ScriptBaseClass.ZERO_ROTATION.s); ilGen.Emit(type, OpCodes.Newobj, lslRotationConstructorInfo); return; } if((type is TokenTypeKey) || (type is TokenTypeStr)) { ilGen.Emit(type, OpCodes.Ldstr, ""); return; } if(type is TokenTypeVec) { // Mono is tOO stOOpid to allow: ilGen.Emit (OpCodes.Ldsfld, zeroVectorFieldInfo); ilGen.Emit(type, OpCodes.Ldc_R8, ScriptBaseClass.ZERO_VECTOR.x); ilGen.Emit(type, OpCodes.Ldc_R8, ScriptBaseClass.ZERO_VECTOR.y); ilGen.Emit(type, OpCodes.Ldc_R8, ScriptBaseClass.ZERO_VECTOR.z); ilGen.Emit(type, OpCodes.Newobj, lslVectorConstructorInfo); return; } if(type is TokenTypeInt) { ilGen.Emit(type, OpCodes.Ldc_I4_0); return; } if(type is TokenTypeFloat) { ilGen.Emit(type, OpCodes.Ldc_R4, 0.0f); return; } // Default for 'object' type is 'undef'. // Likewise for script-defined classes and interfaces. if((type is TokenTypeObject) || (type is TokenTypeSDTypeClass) || (type is TokenTypeSDTypeInterface) || (type is TokenTypeExc)) { ilGen.Emit(type, OpCodes.Ldnull); return; } // Void is pushed as the default return value of a void function. // So just push nothing as expected of void functions. if(type is TokenTypeVoid) { return; } // Default for 'delegate' type is 'undef'. if(type is TokenTypeSDTypeDelegate) { ilGen.Emit(type, OpCodes.Ldnull); return; } throw new Exception("unknown type " + type.GetType().ToString()); } /** * @brief Determine if the expression has a constant boolean value * and if so, if the value is true or false. * @param expr = expression to evaluate * @returns true: expression is contant and has boolean value true * false: otherwise */ private bool IsConstBoolExprTrue(CompValu expr) { bool constVal; return IsConstBoolExpr(expr, out constVal) && constVal; } private bool IsConstBoolExpr(CompValu expr, out bool constVal) { if(expr is CompValuChar) { constVal = ((CompValuChar)expr).x != 0; return true; } if(expr is CompValuFloat) { constVal = ((CompValuFloat)expr).x != (double)0; return true; } if(expr is CompValuInteger) { constVal = ((CompValuInteger)expr).x != 0; return true; } if(expr is CompValuString) { string s = ((CompValuString)expr).x; constVal = s != ""; if(constVal && (expr.type is TokenTypeKey)) { constVal = s != ScriptBaseClass.NULL_KEY; } return true; } constVal = false; return false; } /** * @brief Determine if the expression has a constant integer value * and if so, return the integer value. * @param expr = expression to evaluate * @returns true: expression is contant and has integer value * false: otherwise */ private bool IsConstIntExpr(CompValu expr, out int constVal) { if(expr is CompValuChar) { constVal = (int)((CompValuChar)expr).x; return true; } if(expr is CompValuInteger) { constVal = ((CompValuInteger)expr).x; return true; } constVal = 0; return false; } /** * @brief Determine if the expression has a constant string value * and if so, return the string value. * @param expr = expression to evaluate * @returns true: expression is contant and has string value * false: otherwise */ private bool IsConstStrExpr(CompValu expr, out string constVal) { if(expr is CompValuString) { constVal = ((CompValuString)expr).x; return true; } constVal = ""; return false; } /** * @brief create table of legal event handler prototypes. * This is used to make sure script's event handler declrations are valid. */ private static VarDict CreateLegalEventHandlers() { // Get handler prototypes with full argument lists. VarDict leh = new InternalFuncDict(typeof(IEventHandlers), false); // We want the scripts to be able to declare their handlers with // fewer arguments than the full argument lists. So define additional // prototypes with fewer arguments. TokenDeclVar[] fullArgProtos = new TokenDeclVar[leh.Count]; int i = 0; foreach(TokenDeclVar fap in leh) fullArgProtos[i++] = fap; foreach(TokenDeclVar fap in fullArgProtos) { TokenArgDecl fal = fap.argDecl; int fullArgCount = fal.vars.Length; for(i = 0; i < fullArgCount; i++) { TokenArgDecl shortArgList = new TokenArgDecl(null); for(int j = 0; j < i; j++) { TokenDeclVar var = fal.vars[j]; shortArgList.AddArg(var.type, var.name); } TokenDeclVar shortArgProto = new TokenDeclVar(null, null, null); shortArgProto.name = new TokenName(null, fap.GetSimpleName()); shortArgProto.retType = fap.retType; shortArgProto.argDecl = shortArgList; leh.AddEntry(shortArgProto); } } return leh; } /** * @brief Emit a call to CheckRun(), (voluntary multitasking switch) */ public void EmitCallCheckRun(Token errorAt, bool stack) { if(curDeclFunc.IsFuncTrivial(this)) throw new Exception(curDeclFunc.fullName + " is supposed to be trivial"); new CallLabel(this, errorAt); // jump here when stack restored PushXMRInst(); // instance ilGen.Emit(errorAt, OpCodes.Call, stack ? checkRunStackMethInfo : checkRunQuickMethInfo); openCallLabel = null; } /** * @brief Emit code to push a callNo var on the stack. */ public void GetCallNo(Token errorAt, ScriptMyLocal callNoVar) { ilGen.Emit(errorAt, OpCodes.Ldloc, callNoVar); //ilGen.Emit (errorAt, OpCodes.Ldloca, callNoVar); //ilGen.Emit (errorAt, OpCodes.Volatile); //ilGen.Emit (errorAt, OpCodes.Ldind_I4); } public void GetCallNo(Token errorAt, CompValu callNoVar) { callNoVar.PushVal(this, errorAt); //callNoVar.PushRef (this, errorAt); //ilGen.Emit (errorAt, OpCodes.Volatile); //ilGen.Emit (errorAt, OpCodes.Ldind_I4); } /** * @brief Emit code to set a callNo var to a given constant. */ public void SetCallNo(Token errorAt, ScriptMyLocal callNoVar, int val) { ilGen.Emit(errorAt, OpCodes.Ldc_I4, val); ilGen.Emit(errorAt, OpCodes.Stloc, callNoVar); //ilGen.Emit (errorAt, OpCodes.Ldloca, callNoVar); //ilGen.Emit (errorAt, OpCodes.Ldc_I4, val); //ilGen.Emit (errorAt, OpCodes.Volatile); //ilGen.Emit (errorAt, OpCodes.Stind_I4); } public void SetCallNo(Token errorAt, CompValu callNoVar, int val) { callNoVar.PopPre(this, errorAt); ilGen.Emit(errorAt, OpCodes.Ldc_I4, val); callNoVar.PopPost(this, errorAt); //callNoVar.PushRef (this, errorAt); //ilGen.Emit (errorAt, OpCodes.Ldc_I4, val); //ilGen.Emit (errorAt, OpCodes.Volatile); //ilGen.Emit (errorAt, OpCodes.Stind_I4); } /** * @brief handle a unary operator, such as -x. */ private CompValu UnOpGenerate(CompValu inRVal, Token opcode) { // - Negate if(opcode is TokenKwSub) { if(inRVal.type is TokenTypeFloat) { CompValuTemp outRVal = new CompValuTemp(new TokenTypeFloat(opcode), this); inRVal.PushVal(this, opcode, outRVal.type); // push value to negate, make sure not LSL-boxed ilGen.Emit(opcode, OpCodes.Neg); // compute the negative outRVal.Pop(this, opcode); // pop into result return outRVal; // tell caller where we put it } if(inRVal.type is TokenTypeInt) { CompValuTemp outRVal = new CompValuTemp(new TokenTypeInt(opcode), this); inRVal.PushVal(this, opcode, outRVal.type); // push value to negate, make sure not LSL-boxed ilGen.Emit(opcode, OpCodes.Neg); // compute the negative outRVal.Pop(this, opcode); // pop into result return outRVal; // tell caller where we put it } if(inRVal.type is TokenTypeRot) { CompValuTemp outRVal = new CompValuTemp(inRVal.type, this); inRVal.PushVal(this, opcode); // push rotation, then call negate routine ilGen.Emit(opcode, OpCodes.Call, lslRotationNegateMethodInfo); outRVal.Pop(this, opcode); // pop into result return outRVal; // tell caller where we put it } if(inRVal.type is TokenTypeVec) { CompValuTemp outRVal = new CompValuTemp(inRVal.type, this); inRVal.PushVal(this, opcode); // push vector, then call negate routine ilGen.Emit(opcode, OpCodes.Call, lslVectorNegateMethodInfo); outRVal.Pop(this, opcode); // pop into result return outRVal; // tell caller where we put it } ErrorMsg(opcode, "can't negate a " + inRVal.type.ToString()); return inRVal; } // ~ Complement (bitwise integer) if(opcode is TokenKwTilde) { if(inRVal.type is TokenTypeInt) { CompValuTemp outRVal = new CompValuTemp(new TokenTypeInt(opcode), this); inRVal.PushVal(this, opcode, outRVal.type); // push value to negate, make sure not LSL-boxed ilGen.Emit(opcode, OpCodes.Not); // compute the complement outRVal.Pop(this, opcode); // pop into result return outRVal; // tell caller where we put it } ErrorMsg(opcode, "can't complement a " + inRVal.type.ToString()); return inRVal; } // ! Not (boolean) // // We stuff the 0/1 result in an int because I've seen x+!y in scripts // and we don't want to have to create tables to handle int+bool and // everything like that. if(opcode is TokenKwExclam) { CompValuTemp outRVal = new CompValuTemp(new TokenTypeInt(opcode), this); inRVal.PushVal(this, opcode, tokenTypeBool); // anything converts to boolean ilGen.Emit(opcode, OpCodes.Ldc_I4_1); // then XOR with 1 to flip it ilGen.Emit(opcode, OpCodes.Xor); outRVal.Pop(this, opcode); // pop into result return outRVal; // tell caller where we put it } throw new Exception("unhandled opcode " + opcode.ToString()); } /** * @brief This is called while trying to compute the value of constant initializers. * It is passed a name and that name is looked up in the constant tables. */ private TokenRVal LookupInitConstants(TokenRVal rVal, ref bool didOne) { // If it is a static field of a script-defined type, look it up and hopefully we find a constant there. TokenDeclVar gblVar; if(rVal is TokenLValSField) { TokenLValSField lvsf = (TokenLValSField)rVal; if(lvsf.baseType is TokenTypeSDTypeClass) { TokenDeclSDTypeClass sdtClass = ((TokenTypeSDTypeClass)lvsf.baseType).decl; gblVar = sdtClass.members.FindExact(lvsf.fieldName.val, null); if(gblVar != null) { if(gblVar.constant && (gblVar.init is TokenRValConst)) { didOne = true; return gblVar.init; } } } return rVal; } // Only other thing we handle is stand-alone names. if(!(rVal is TokenLValName)) return rVal; string name = ((TokenLValName)rVal).name.val; // If we are doing the initializations for a script-defined type, // look for the constant among the fields for that type. if(currentSDTClass != null) { gblVar = currentSDTClass.members.FindExact(name, null); if(gblVar != null) { if(gblVar.constant && (gblVar.init is TokenRValConst)) { didOne = true; return gblVar.init; } return rVal; } } // Look it up as a script-defined global variable. // Then if the variable is defined as a constant and has a constant value, // we are successful. If it is defined as something else, return failure. gblVar = tokenScript.variablesStack.FindExact(name, null); if(gblVar != null) { if(gblVar.constant && (gblVar.init is TokenRValConst)) { didOne = true; return gblVar.init; } return rVal; } // Maybe it is a built-in symbolic constant. ScriptConst scriptConst = ScriptConst.Lookup(name); if(scriptConst != null) { rVal = CompValuConst2RValConst(scriptConst.rVal, rVal); if(rVal is TokenRValConst) { didOne = true; return rVal; } } // Don't know what it is, return failure. return rVal; } /** * @brief This is called while trying to compute the value of constant expressions. * It is passed a name and that name is looked up in the constant tables. */ private TokenRVal LookupBodyConstants(TokenRVal rVal, ref bool didOne) { // If it is a static field of a script-defined type, look it up and hopefully we find a constant there. TokenDeclVar gblVar; if(rVal is TokenLValSField) { TokenLValSField lvsf = (TokenLValSField)rVal; if(lvsf.baseType is TokenTypeSDTypeClass) { TokenDeclSDTypeClass sdtClass = ((TokenTypeSDTypeClass)lvsf.baseType).decl; gblVar = sdtClass.members.FindExact(lvsf.fieldName.val, null); if((gblVar != null) && gblVar.constant && (gblVar.init is TokenRValConst)) { didOne = true; return gblVar.init; } } return rVal; } // Only other thing we handle is stand-alone names. if(!(rVal is TokenLValName)) return rVal; string name = ((TokenLValName)rVal).name.val; // Scan through the variable stack and hopefully we find a constant there. // But we stop as soon as we get a match because that's what the script is referring to. CompValu val; for(VarDict vars = ((TokenLValName)rVal).stack; vars != null; vars = vars.outerVarDict) { TokenDeclVar var = vars.FindExact(name, null); if(var != null) { val = var.location; goto foundit; } TokenDeclSDTypeClass baseClass = vars.thisClass; if(baseClass != null) { while((baseClass = baseClass.extends) != null) { var = baseClass.members.FindExact(name, null); if(var != null) { val = var.location; goto foundit; } } } } // Maybe it is a built-in symbolic constant. ScriptConst scriptConst = ScriptConst.Lookup(name); if(scriptConst != null) { val = scriptConst.rVal; goto foundit; } // Don't know what it is, return failure. return rVal; // Found a CompValu. If it's a simple constant, then use it. // Otherwise tell caller we failed to simplify. foundit: rVal = CompValuConst2RValConst(val, rVal); if(rVal is TokenRValConst) { didOne = true; } return rVal; } private static TokenRVal CompValuConst2RValConst(CompValu val, TokenRVal rVal) { if(val is CompValuChar) rVal = new TokenRValConst(rVal, ((CompValuChar)val).x); if(val is CompValuFloat) rVal = new TokenRValConst(rVal, ((CompValuFloat)val).x); if(val is CompValuInteger) rVal = new TokenRValConst(rVal, ((CompValuInteger)val).x); if(val is CompValuString) rVal = new TokenRValConst(rVal, ((CompValuString)val).x); return rVal; } /** * @brief Generate code to push XMRInstanceSuperType pointer on stack. */ public void PushXMRInst() { if(instancePointer == null) { ilGen.Emit(null, OpCodes.Ldarg_0); } else { ilGen.Emit(null, OpCodes.Ldloc, instancePointer); } } /** * @returns true: Ldarg_0 gives XMRSDTypeClObj pointer * - this is the case for instance methods * false: Ldarg_0 gives XMR_Instance pointer * - this is the case for both global functions and static methods */ public bool IsSDTInstMethod() { return (curDeclFunc.sdtClass != null) && ((curDeclFunc.sdtFlags & ScriptReduce.SDT_STATIC) == 0); } /** * @brief Look for a simply named function or variable (not a field or method) */ public TokenDeclVar FindNamedVar(TokenLValName lValName, TokenType[] argsig) { // Look in variable stack for the given name. for(VarDict vars = lValName.stack; vars != null; vars = vars.outerVarDict) { // first look for it possibly with an argument signature // so we pick the correct overloaded method TokenDeclVar var = FindSingleMember(vars, lValName.name, argsig); if(var != null) return var; // if that fails, try it without the argument signature. // delegates get entered like any other variable, ie, // no signature on their name. if(argsig != null) { var = FindSingleMember(vars, lValName.name, null); if(var != null) return var; } // if this is the frame for some class members, try searching base class members too TokenDeclSDTypeClass baseClass = vars.thisClass; if(baseClass != null) { while((baseClass = baseClass.extends) != null) { var = FindSingleMember(baseClass.members, lValName.name, argsig); if(var != null) return var; if(argsig != null) { var = FindSingleMember(baseClass.members, lValName.name, null); if(var != null) return var; } } } } // If not found, try one of the built-in constants or functions. if(argsig == null) { ScriptConst scriptConst = ScriptConst.Lookup(lValName.name.val); if(scriptConst != null) { TokenDeclVar var = new TokenDeclVar(lValName.name, null, tokenScript); var.name = lValName.name; var.type = scriptConst.rVal.type; var.location = scriptConst.rVal; return var; } } else { TokenDeclVar inline = FindSingleMember(TokenDeclInline.inlineFunctions, lValName.name, argsig); if(inline != null) return inline; } return null; } /** * @brief Find a member of an interface. * @param sdType = interface type * @param name = name of member to find * @param argsig = null: field/property; else: script-visible method argument types * @param baseRVal = pointer to interface object * @returns null: no such member * else: pointer to member * baseRVal = possibly modified to point to type-casted interface object */ private TokenDeclVar FindInterfaceMember(TokenTypeSDTypeInterface sdtType, TokenName name, TokenType[] argsig, ref CompValu baseRVal) { TokenDeclSDTypeInterface sdtDecl = sdtType.decl; TokenDeclSDTypeInterface impl; TokenDeclVar declVar = sdtDecl.FindIFaceMember(this, name, argsig, out impl); if((declVar != null) && (impl != sdtDecl)) { // Accessing a method or propterty of another interface that the primary interface says it implements. // In this case, we have to cast from the primary interface to that secondary interface. // // interface IEnumerable { // IEnumerator GetEnumerator (); // } // interface ICountable : IEnumerable { // integer GetCount (); // } // class List : ICountable { // public GetCount () : ICountable { ... } // public GetEnumerator () : IEnumerable { ... } // } // // ICountable aList = new List (); // IEnumerator anEnumer = aList.GetEnumerator (); << we are here // << baseRVal = aList // << sdtDecl = ICountable // << impl = IEnumerable // << name = GetEnumerator // << argsig = () // So we have to cast aList from ICountable to IEnumerable. // make type token for the secondary interface type TokenType subIntfType = impl.MakeRefToken(name); // make a temp variable of the secondary interface type CompValuTemp castBase = new CompValuTemp(subIntfType, this); // output code to cast from the primary interface to the secondary interface // this is 2 basic steps: // 1) cast from primary interface object -> class object // ...gets it from interfaceObject.delegateArray[0].Target // 2) cast from class object -> secondary interface object // ...gets it from classObject.sdtcITable[interfaceIndex] baseRVal.PushVal(this, name, subIntfType); // save result of casting in temp castBase.Pop(this, name); // return temp reference baseRVal = castBase; } return declVar; } /** * @brief Find a member of a script-defined type class. * @param sdtType = reference to class declaration * @param name = name of member to find * @param argsig = argument signature used to select among overloaded members * @returns null: no such member found * else: the member found */ public TokenDeclVar FindThisMember(TokenTypeSDTypeClass sdtType, TokenName name, TokenType[] argsig) { return FindThisMember(sdtType.decl, name, argsig); } public TokenDeclVar FindThisMember(TokenDeclSDTypeClass sdtDecl, TokenName name, TokenType[] argsig) { for(TokenDeclSDTypeClass sdtd = sdtDecl; sdtd != null; sdtd = sdtd.extends) { TokenDeclVar declVar = FindSingleMember(sdtd.members, name, argsig); if(declVar != null) return declVar; } return null; } /** * @brief Look for a single member that matches the given name and argument signature * @param where = which dictionary to look in * @param name = basic name of the field or method, eg, "Printable" * @param argsig = argument types the method is being called with, eg, "(string)" * or null to find a field * @returns null: no member found * else: the member found */ public TokenDeclVar FindSingleMember(VarDict where, TokenName name, TokenType[] argsig) { TokenDeclVar[] members = where.FindCallables(name.val, argsig); if(members == null) return null; if(members.Length > 1) { ErrorMsg(name, "more than one matching member"); for(int i = 0; i < members.Length; i++) { ErrorMsg(members[i], " " + members[i].argDecl.GetArgSig()); } } return members[0]; } /** * @brief Find an exact function name and argument signature match. * Also verify that the return value type is an exact match. * @param where = which method dictionary to look in * @param name = basic name of the method, eg, "Printable" * @param ret = expected return value type * @param argsig = argument types the method is being called with, eg, "(string)" * @returns null: no exact match found * else: the matching function */ private TokenDeclVar FindExactWithRet(VarDict where, TokenName name, TokenType ret, TokenType[] argsig) { TokenDeclVar func = where.FindExact(name.val, argsig); if((func != null) && (func.retType.ToString() != ret.ToString())) { ErrorMsg(name, "return type mismatch, have " + func.retType.ToString() + ", expect " + ret.ToString()); } if(func != null) CheckAccess(func, name); return func; } /** * @brief Check the private/protected/public access flags of a member. */ private void CheckAccess(TokenDeclVar var, Token errorAt) { TokenDeclSDType nested; TokenDeclSDType definedBy = var.sdtClass; TokenDeclSDType accessedBy = curDeclFunc.sdtClass; //******************************* // Check member-level access //******************************* // Note that if accessedBy is null, ie, accessing from global function (or event handlers), // anything tagged as SDT_PRIVATE or SDT_PROTECTED will fail. // Private means accessed by the class that defined the member or accessed by a nested class // of the class that defined the member. if((var.sdtFlags & ScriptReduce.SDT_PRIVATE) != 0) { for(nested = accessedBy; nested != null; nested = nested.outerSDType) { if(nested == definedBy) goto acc1ok; } ErrorMsg(errorAt, "private member " + var.fullName + " cannot be accessed by " + curDeclFunc.fullName); return; } // Protected means: // If being accessed by an inner class, the inner class has access to it if the inner class derives // from the declaring class. It also has access to it if an outer class derives from the declaring // class. if((var.sdtFlags & ScriptReduce.SDT_PROTECTED) != 0) { for(nested = accessedBy; nested != null; nested = nested.outerSDType) { for(TokenDeclSDType rootward = nested; rootward != null; rootward = rootward.extends) { if(rootward == definedBy) goto acc1ok; } } ErrorMsg(errorAt, "protected member " + var.fullName + " cannot be accessed by " + curDeclFunc.fullName); return; } acc1ok: //****************************** // Check class-level access //****************************** // If being accessed by same or inner class than where defined, it is ok. // // class DefiningClass { // varBeingAccessed; // . // . // . // class AccessingClass { // functionDoingAccess() { } // } // . // . // . // } nested = accessedBy; while(true) { if(nested == definedBy) return; if(nested == null) break; nested = (TokenDeclSDTypeClass)nested.outerSDType; } // It is being accessed by an outer class than where defined, // check for a 'private' or 'protected' class tag that blocks. do { // If the field's class is defined directly inside the accessing class, // access is allowed regardless of class-level private or protected tags. // // class AccessingClass { // functionDoingAccess() { } // class DefiningClass { // varBeingAccessed; // } // } if(definedBy.outerSDType == accessedBy) return; // If the field's class is defined two or more levels inside the accessing class, // access is denied if the defining class is tagged private. // // class AccessingClass { // functionDoingAccess() { } // . // . // . // class IntermediateClass { // private class DefiningClass { // varBeingAccessed; // } // } // . // . // . // } if((definedBy.accessLevel & ScriptReduce.SDT_PRIVATE) != 0) { ErrorMsg(errorAt, "member " + var.fullName + " cannot be accessed by " + curDeclFunc.fullName + " because of private class " + definedBy.longName.val); return; } // Likewise, if DefiningClass is tagged protected, the AccessingClass must derive from the // IntermediateClass or access is denied. if((definedBy.accessLevel & ScriptReduce.SDT_PROTECTED) != 0) { for(TokenDeclSDType extends = accessedBy; extends != definedBy.outerSDType; extends = extends.extends) { if(extends == null) { ErrorMsg(errorAt, "member " + var.fullName + " cannot be accessed by " + curDeclFunc.fullName + " because of protected class " + definedBy.longName.val); return; } } } // Check next outer level. definedBy = definedBy.outerSDType; } while(definedBy != null); } /** * @brief Convert a list of argument types to printable string, eg, "(list,string,float,integer)" * If given a null, return "" indicating it is a field not a method */ public static string ArgSigString(TokenType[] argsig) { if(argsig == null) return ""; StringBuilder sb = new StringBuilder("("); for(int i = 0; i < argsig.Length; i++) { if(i > 0) sb.Append(","); sb.Append(argsig[i].ToString()); } sb.Append(")"); return sb.ToString(); } /** * @brief output error message and remember that we did */ public void ErrorMsg(Token token, string message) { if((token == null) || (token.emsg == null)) token = errorMessageToken; if(!youveAnError || (token.file != lastErrorFile) || (token.line > lastErrorLine)) { token.ErrorMsg(message); youveAnError = true; lastErrorFile = token.file; lastErrorLine = token.line; } } /** * @brief Find a private static method. * @param owner = class the method is part of * @param name = name of method to find * @param args = array of argument types * @returns pointer to method */ public static MethodInfo GetStaticMethod(Type owner, string name, Type[] args) { MethodInfo mi = owner.GetMethod(name, BindingFlags.Static | BindingFlags.Public | BindingFlags.NonPublic, null, args, null); if(mi == null) { throw new Exception("undefined method " + owner.ToString() + "." + name); } return mi; } // http://wiki.secondlife.com/wiki/Rotation 'negate a rotation' says just negate .s component // but http://wiki.secondlife.com/wiki/LSL_Language_Test (lslangtest1.lsl) says negate all 4 values public static LSL_Rotation LSLRotationNegate(LSL_Rotation r) { return new LSL_Rotation(-r.x, -r.y, -r.z, -r.s); } public static LSL_Vector LSLVectorNegate(LSL_Vector v) { return -v; } public static string CatchExcToStr(Exception exc) { return exc.ToString(); } //public static void ConsoleWrite (string str) { Console.Write(str); } /** * @brief Defines an internal label that is used as a target for 'break' and 'continue' statements. */ private class BreakContTarg { public bool used; public ScriptMyLabel label; public TokenStmtBlock block; public BreakContTarg(ScriptCodeGen scg, string name) { used = false; // assume it isn't referenced at all label = scg.ilGen.DefineLabel(name); // label that the break/continue jumps to block = scg.curStmtBlock; // { ... } that the break/continue label is in } } } /** * @brief Marker interface indicates an exception that can't be caught by a script-level try/catch. */ public interface IXMRUncatchable { } /** * @brief Thrown by a script when it attempts to change to an undefined state. * These can be detected at compile time but the moron XEngine compiles * such things, so we compile them as runtime errors. */ [SerializableAttribute] public class ScriptUndefinedStateException: Exception, ISerializable { public string stateName; public ScriptUndefinedStateException(string stateName) : base("undefined state " + stateName) { this.stateName = stateName; } protected ScriptUndefinedStateException(SerializationInfo info, StreamingContext context) : base(info, context) { } } /** * @brief Created by a throw statement. */ [SerializableAttribute] public class ScriptThrownException: Exception, ISerializable { public object thrown; /** * @brief Called by a throw statement to wrap the object in a unique * tag that capable of capturing a stack trace. Script can * unwrap it by calling xmrExceptionThrownValue(). */ public static Exception Wrap(object thrown) { return new ScriptThrownException(thrown); } private ScriptThrownException(object thrown) : base(thrown.ToString()) { this.thrown = thrown; } /** * @brief Used by serialization/deserialization. */ protected ScriptThrownException(SerializationInfo info, StreamingContext context) : base(info, context) { } } /** * @brief Thrown by a script when it attempts to change to a defined state. */ [SerializableAttribute] public class ScriptChangeStateException: Exception, ISerializable, IXMRUncatchable { public int newState; public ScriptChangeStateException(int newState) { this.newState = newState; } protected ScriptChangeStateException(SerializationInfo info, StreamingContext context) : base(info, context) { } } /** * @brief We are restoring to the body of a catch { } so we need to * wrap the original exception in an outer exception, so the * system won't try to refill the stack trace. * * We don't mark this one serializable as it should never get * serialized out. It only lives from the throw to the very * beginning of the catch handler where it is promptly unwrapped. * No CheckRun() call can possibly intervene. */ public class ScriptRestoreCatchException: Exception { // old code uses these private object e; public ScriptRestoreCatchException(object e) { this.e = e; } public static object Unwrap(object o) { if(o is IXMRUncatchable) return null; if(o is ScriptRestoreCatchException) return ((ScriptRestoreCatchException)o).e; return o; } // new code uses these private Exception ee; public ScriptRestoreCatchException(Exception ee) { this.ee = ee; } public static Exception Unwrap(Exception oo) { if(oo is IXMRUncatchable) return null; if(oo is ScriptRestoreCatchException) return ((ScriptRestoreCatchException)oo).ee; return oo; } } [SerializableAttribute] public class ScriptBadCallNoException: Exception { public ScriptBadCallNoException(int callNo) : base("bad callNo " + callNo) { } protected ScriptBadCallNoException(SerializationInfo info, StreamingContext context) : base(info, context) { } } public class CVVMismatchException: Exception { public CVVMismatchException(string msg) : base(msg) { } } }