/* * Copyright (c) Contributors, http://opensimulator.org/ * See CONTRIBUTORS.TXT for a full list of copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyrightD * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the OpenSimulator Project nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ using System; using System.Collections.Generic; using System.Text; using OpenSim.Region.OptionalModules.Scripting; using OMV = OpenMetaverse; namespace OpenSim.Region.PhysicsModule.BulletS { public sealed class BSLinksetConstraints : BSLinkset { // private static string LogHeader = "[BULLETSIM LINKSET CONSTRAINTS]"; public class BSLinkInfoConstraint : BSLinkInfo { public ConstraintType constraintType; public BSConstraint constraint; public OMV.Vector3 linearLimitLow; public OMV.Vector3 linearLimitHigh; public OMV.Vector3 angularLimitLow; public OMV.Vector3 angularLimitHigh; public bool useFrameOffset; public bool enableTransMotor; public float transMotorMaxVel; public float transMotorMaxForce; public float cfm; public float erp; public float solverIterations; // public OMV.Vector3 frameInAloc; public OMV.Quaternion frameInArot; public OMV.Vector3 frameInBloc; public OMV.Quaternion frameInBrot; public bool useLinearReferenceFrameA; // Spring public bool[] springAxisEnable; public float[] springDamping; public float[] springStiffness; public OMV.Vector3 springLinearEquilibriumPoint; public OMV.Vector3 springAngularEquilibriumPoint; public BSLinkInfoConstraint(BSPrimLinkable pMember) : base(pMember) { constraint = null; ResetLink(); member.PhysScene.DetailLog("{0},BSLinkInfoConstraint.creation", member.LocalID); } // Set all the parameters for this constraint to a fixed, non-movable constraint. public override void ResetLink() { // constraintType = ConstraintType.D6_CONSTRAINT_TYPE; constraintType = ConstraintType.BS_FIXED_CONSTRAINT_TYPE; linearLimitLow = OMV.Vector3.Zero; linearLimitHigh = OMV.Vector3.Zero; angularLimitLow = OMV.Vector3.Zero; angularLimitHigh = OMV.Vector3.Zero; useFrameOffset = BSParam.LinkConstraintUseFrameOffset; enableTransMotor = BSParam.LinkConstraintEnableTransMotor; transMotorMaxVel = BSParam.LinkConstraintTransMotorMaxVel; transMotorMaxForce = BSParam.LinkConstraintTransMotorMaxForce; cfm = BSParam.LinkConstraintCFM; erp = BSParam.LinkConstraintERP; solverIterations = BSParam.LinkConstraintSolverIterations; frameInAloc = OMV.Vector3.Zero; frameInArot = OMV.Quaternion.Identity; frameInBloc = OMV.Vector3.Zero; frameInBrot = OMV.Quaternion.Identity; useLinearReferenceFrameA = true; springAxisEnable = new bool[6]; springDamping = new float[6]; springStiffness = new float[6]; for (int ii = 0; ii < springAxisEnable.Length; ii++) { springAxisEnable[ii] = false; springDamping[ii] = BSAPITemplate.SPRING_NOT_SPECIFIED; springStiffness[ii] = BSAPITemplate.SPRING_NOT_SPECIFIED; } springLinearEquilibriumPoint = OMV.Vector3.Zero; springAngularEquilibriumPoint = OMV.Vector3.Zero; member.PhysScene.DetailLog("{0},BSLinkInfoConstraint.ResetLink", member.LocalID); } // Given a constraint, apply the current constraint parameters to same. public override void SetLinkParameters(BSConstraint constrain) { member.PhysScene.DetailLog("{0},BSLinkInfoConstraint.SetLinkParameters,type={1}", member.LocalID, constraintType); switch (constraintType) { case ConstraintType.BS_FIXED_CONSTRAINT_TYPE: case ConstraintType.D6_CONSTRAINT_TYPE: BSConstraint6Dof constrain6dof = constrain as BSConstraint6Dof; if (constrain6dof != null) { // NOTE: D6_SPRING_CONSTRAINT_TYPE should be updated if you change any of this code. // zero linear and angular limits makes the objects unable to move in relation to each other constrain6dof.SetLinearLimits(linearLimitLow, linearLimitHigh); constrain6dof.SetAngularLimits(angularLimitLow, angularLimitHigh); // tweek the constraint to increase stability constrain6dof.UseFrameOffset(useFrameOffset); constrain6dof.TranslationalLimitMotor(enableTransMotor, transMotorMaxVel, transMotorMaxForce); constrain6dof.SetCFMAndERP(cfm, erp); if (solverIterations != 0f) { constrain6dof.SetSolverIterations(solverIterations); } } break; case ConstraintType.D6_SPRING_CONSTRAINT_TYPE: BSConstraintSpring constrainSpring = constrain as BSConstraintSpring; if (constrainSpring != null) { // zero linear and angular limits makes the objects unable to move in relation to each other constrainSpring.SetLinearLimits(linearLimitLow, linearLimitHigh); constrainSpring.SetAngularLimits(angularLimitLow, angularLimitHigh); // tweek the constraint to increase stability constrainSpring.UseFrameOffset(useFrameOffset); constrainSpring.TranslationalLimitMotor(enableTransMotor, transMotorMaxVel, transMotorMaxForce); constrainSpring.SetCFMAndERP(cfm, erp); if (solverIterations != 0f) { constrainSpring.SetSolverIterations(solverIterations); } for (int ii = 0; ii < springAxisEnable.Length; ii++) { constrainSpring.SetAxisEnable(ii, springAxisEnable[ii]); if (springDamping[ii] != BSAPITemplate.SPRING_NOT_SPECIFIED) constrainSpring.SetDamping(ii, springDamping[ii]); if (springStiffness[ii] != BSAPITemplate.SPRING_NOT_SPECIFIED) constrainSpring.SetStiffness(ii, springStiffness[ii]); } constrainSpring.CalculateTransforms(); if (springLinearEquilibriumPoint != OMV.Vector3.Zero) constrainSpring.SetEquilibriumPoint(springLinearEquilibriumPoint, springAngularEquilibriumPoint); else constrainSpring.SetEquilibriumPoint(BSAPITemplate.SPRING_NOT_SPECIFIED, BSAPITemplate.SPRING_NOT_SPECIFIED); } break; default: break; } } // Return 'true' if the property updates from the physics engine should be reported // to the simulator. // If the constraint is fixed, we don't need to report as the simulator and viewer will // report the right things. public override bool ShouldUpdateChildProperties() { bool ret = true; if (constraintType == ConstraintType.BS_FIXED_CONSTRAINT_TYPE) ret = false; return ret; } } public BSLinksetConstraints(BSScene scene, BSPrimLinkable parent) : base(scene, parent) { LinksetImpl = LinksetImplementation.Constraint; } private static string LogHeader = "[BULLETSIM LINKSET CONSTRAINT]"; // When physical properties are changed the linkset needs to recalculate // its internal properties. // This is queued in the 'post taint' queue so the // refresh will happen once after all the other taints are applied. public override void Refresh(BSPrimLinkable requestor) { ScheduleRebuild(requestor); base.Refresh(requestor); } private void ScheduleRebuild(BSPrimLinkable requestor) { DetailLog("{0},BSLinksetConstraint.ScheduleRebuild,,rebuilding={1},hasChildren={2},actuallyScheduling={3}", requestor.LocalID, Rebuilding, HasAnyChildren, (!Rebuilding && HasAnyChildren)); // When rebuilding, it is possible to set properties that would normally require a rebuild. // If already rebuilding, don't request another rebuild. // If a linkset with just a root prim (simple non-linked prim) don't bother rebuilding. lock (this) { if (!RebuildScheduled) { if (!Rebuilding && HasAnyChildren) { RebuildScheduled = true; // Queue to happen after all the other taint processing m_physicsScene.PostTaintObject("BSLinksetContraints.Refresh", requestor.LocalID, delegate() { if (HasAnyChildren) { // Constraints that have not been changed are not rebuild but make sure // the constraint of the requestor is rebuilt. PhysicallyUnlinkAChildFromRoot(LinksetRoot, requestor); // Rebuild the linkset and all its constraints. RecomputeLinksetConstraints(); } RebuildScheduled = false; }); } } } } // The object is going dynamic (physical). Do any setup necessary // for a dynamic linkset. // Only the state of the passed object can be modified. The rest of the linkset // has not yet been fully constructed. // Return 'true' if any properties updated on the passed object. // Called at taint-time! public override bool MakeDynamic(BSPrimLinkable child) { bool ret = false; DetailLog("{0},BSLinksetConstraints.MakeDynamic,call,IsRoot={1}", child.LocalID, IsRoot(child)); if (IsRoot(child)) { // The root is going dynamic. Rebuild the linkset so parts and mass get computed properly. Refresh(LinksetRoot); } return ret; } // The object is going static (non-physical). Do any setup necessary for a static linkset. // Return 'true' if any properties updated on the passed object. // This doesn't normally happen -- OpenSim removes the objects from the physical // world if it is a static linkset. // Called at taint-time! public override bool MakeStatic(BSPrimLinkable child) { bool ret = false; DetailLog("{0},BSLinksetConstraint.MakeStatic,call,IsRoot={1}", child.LocalID, IsRoot(child)); child.ClearDisplacement(); if (IsRoot(child)) { // Schedule a rebuild to verify that the root shape is set to the real shape. Refresh(LinksetRoot); } return ret; } // Called at taint-time!! public override void UpdateProperties(UpdatedProperties whichUpdated, BSPrimLinkable pObj) { // Nothing to do for constraints on property updates } // Routine called when rebuilding the body of some member of the linkset. // Destroy all the constraints have have been made to root and set // up to rebuild the constraints before the next simulation step. // Returns 'true' of something was actually removed and would need restoring // Called at taint-time!! public override bool RemoveDependencies(BSPrimLinkable child) { bool ret = false; DetailLog("{0},BSLinksetConstraint.RemoveDependencies,removeChildrenForRoot,rID={1},rBody={2}", child.LocalID, LinksetRoot.LocalID, LinksetRoot.PhysBody.AddrString); lock (m_linksetActivityLock) { // Just undo all the constraints for this linkset. Rebuild at the end of the step. ret = PhysicallyUnlinkAllChildrenFromRoot(LinksetRoot); // Cause the constraints, et al to be rebuilt before the next simulation step. Refresh(LinksetRoot); } return ret; } // ================================================================ // Add a new child to the linkset. // Called while LinkActivity is locked. protected override void AddChildToLinkset(BSPrimLinkable child) { if (!HasChild(child)) { m_children.Add(child, new BSLinkInfoConstraint(child)); DetailLog("{0},BSLinksetConstraints.AddChildToLinkset,call,child={1}", LinksetRoot.LocalID, child.LocalID); // Cause constraints and assorted properties to be recomputed before the next simulation step. Refresh(LinksetRoot); } return; } // Remove the specified child from the linkset. // Safe to call even if the child is not really in my linkset. protected override void RemoveChildFromLinkset(BSPrimLinkable child, bool inTaintTime) { if (m_children.Remove(child)) { BSPrimLinkable rootx = LinksetRoot; // capture the root and body as of now BSPrimLinkable childx = child; DetailLog("{0},BSLinksetConstraints.RemoveChildFromLinkset,call,rID={1},rBody={2},cID={3},cBody={4}", childx.LocalID, rootx.LocalID, rootx.PhysBody.AddrString, childx.LocalID, childx.PhysBody.AddrString); m_physicsScene.TaintedObject(inTaintTime, childx.LocalID, "BSLinksetConstraints.RemoveChildFromLinkset", delegate() { PhysicallyUnlinkAChildFromRoot(rootx, childx); }); // See that the linkset parameters are recomputed at the end of the taint time. Refresh(LinksetRoot); } else { // Non-fatal occurance. // PhysicsScene.Logger.ErrorFormat("{0}: Asked to remove child from linkset that was not in linkset", LogHeader); } return; } // Create a constraint between me (root of linkset) and the passed prim (the child). // Called at taint time! private void PhysicallyLinkAChildToRoot(BSPrimLinkable rootPrim, BSPrimLinkable childPrim) { // Don't build the constraint when asked. Put it off until just before the simulation step. Refresh(rootPrim); } // Create a static constraint between the two passed objects private BSConstraint BuildConstraint(BSPrimLinkable rootPrim, BSLinkInfo li) { BSLinkInfoConstraint linkInfo = li as BSLinkInfoConstraint; if (linkInfo == null) return null; // Zero motion for children so they don't interpolate li.member.ZeroMotion(true); BSConstraint constrain = null; switch (linkInfo.constraintType) { case ConstraintType.BS_FIXED_CONSTRAINT_TYPE: case ConstraintType.D6_CONSTRAINT_TYPE: // Relative position normalized to the root prim // Essentually a vector pointing from center of rootPrim to center of li.member OMV.Vector3 childRelativePosition = linkInfo.member.Position - rootPrim.Position; // real world coordinate of midpoint between the two objects OMV.Vector3 midPoint = rootPrim.Position + (childRelativePosition / 2); DetailLog("{0},BSLinksetConstraint.BuildConstraint,6Dof,rBody={1},cBody={2},rLoc={3},cLoc={4},midLoc={5}", rootPrim.LocalID, rootPrim.PhysBody, linkInfo.member.PhysBody, rootPrim.Position, linkInfo.member.Position, midPoint); // create a constraint that allows no freedom of movement between the two objects // http://bulletphysics.org/Bullet/phpBB3/viewtopic.php?t=4818 constrain = new BSConstraint6Dof( m_physicsScene.World, rootPrim.PhysBody, linkInfo.member.PhysBody, midPoint, true, true ); /* NOTE: below is an attempt to build constraint with full frame computation, etc. * Using the midpoint is easier since it lets the Bullet code manipulate the transforms * of the objects. * Code left for future programmers. // ================================================================================== // relative position normalized to the root prim OMV.Quaternion invThisOrientation = OMV.Quaternion.Inverse(rootPrim.Orientation); OMV.Vector3 childRelativePosition = (liConstraint.member.Position - rootPrim.Position) * invThisOrientation; // relative rotation of the child to the parent OMV.Quaternion childRelativeRotation = invThisOrientation * liConstraint.member.Orientation; OMV.Quaternion inverseChildRelativeRotation = OMV.Quaternion.Inverse(childRelativeRotation); DetailLog("{0},BSLinksetConstraint.PhysicallyLinkAChildToRoot,taint,root={1},child={2}", rootPrim.LocalID, rootPrim.LocalID, liConstraint.member.LocalID); constrain = new BS6DofConstraint( PhysicsScene.World, rootPrim.Body, liConstraint.member.Body, OMV.Vector3.Zero, OMV.Quaternion.Inverse(rootPrim.Orientation), OMV.Vector3.Zero, OMV.Quaternion.Inverse(liConstraint.member.Orientation), true, true ); // ================================================================================== */ break; case ConstraintType.D6_SPRING_CONSTRAINT_TYPE: constrain = new BSConstraintSpring(m_physicsScene.World, rootPrim.PhysBody, linkInfo.member.PhysBody, linkInfo.frameInAloc, linkInfo.frameInArot, linkInfo.frameInBloc, linkInfo.frameInBrot, linkInfo.useLinearReferenceFrameA, true /*disableCollisionsBetweenLinkedBodies*/); DetailLog("{0},BSLinksetConstraint.BuildConstraint,spring,root={1},rBody={2},child={3},cBody={4},rLoc={5},cLoc={6}", rootPrim.LocalID, rootPrim.LocalID, rootPrim.PhysBody.AddrString, linkInfo.member.LocalID, linkInfo.member.PhysBody.AddrString, rootPrim.Position, linkInfo.member.Position); break; default: break; } linkInfo.SetLinkParameters(constrain); m_physicsScene.Constraints.AddConstraint(constrain); return constrain; } // Remove linkage between the linkset root and a particular child // The root and child bodies are passed in because we need to remove the constraint between // the bodies that were present at unlink time. // Called at taint time! private bool PhysicallyUnlinkAChildFromRoot(BSPrimLinkable rootPrim, BSPrimLinkable childPrim) { bool ret = false; DetailLog("{0},BSLinksetConstraint.PhysicallyUnlinkAChildFromRoot,taint,root={1},rBody={2},child={3},cBody={4}", rootPrim.LocalID, rootPrim.LocalID, rootPrim.PhysBody.AddrString, childPrim.LocalID, childPrim.PhysBody.AddrString); // If asked to unlink root from root, just remove all the constraints if (rootPrim == childPrim || childPrim == LinksetRoot) { PhysicallyUnlinkAllChildrenFromRoot(LinksetRoot); ret = true; } else { // Find the constraint for this link and get rid of it from the overall collection and from my list if (m_physicsScene.Constraints.RemoveAndDestroyConstraint(rootPrim.PhysBody, childPrim.PhysBody)) { // Make the child refresh its location m_physicsScene.PE.PushUpdate(childPrim.PhysBody); ret = true; } } return ret; } // Remove linkage between myself and any possible children I might have. // Returns 'true' of any constraints were destroyed. // Called at taint time! private bool PhysicallyUnlinkAllChildrenFromRoot(BSPrimLinkable rootPrim) { DetailLog("{0},BSLinksetConstraint.PhysicallyUnlinkAllChildren,taint", rootPrim.LocalID); return m_physicsScene.Constraints.RemoveAndDestroyConstraint(rootPrim.PhysBody); } // Call each of the constraints that make up this linkset and recompute the // various transforms and variables. Create constraints of not created yet. // Called before the simulation step to make sure the constraint based linkset // is all initialized. // Called at taint time!! private void RecomputeLinksetConstraints() { float linksetMass = LinksetMass; LinksetRoot.UpdatePhysicalMassProperties(linksetMass, true); DetailLog("{0},BSLinksetConstraint.RecomputeLinksetConstraints,set,rBody={1},linksetMass={2}", LinksetRoot.LocalID, LinksetRoot.PhysBody.AddrString, linksetMass); try { Rebuilding = true; // There is no reason to build all this physical stuff for a non-physical linkset. if (!LinksetRoot.IsPhysicallyActive || !HasAnyChildren) { DetailLog("{0},BSLinksetConstraint.RecomputeLinksetCompound,notPhysicalOrNoChildren", LinksetRoot.LocalID); return; // Note the 'finally' clause at the botton which will get executed. } ForEachLinkInfo((li) => { // A child in the linkset physically shows the mass of the whole linkset. // This allows Bullet to apply enough force on the child to move the whole linkset. // (Also do the mass stuff before recomputing the constraint so mass is not zero.) li.member.UpdatePhysicalMassProperties(linksetMass, true); BSConstraint constrain; if (!m_physicsScene.Constraints.TryGetConstraint(LinksetRoot.PhysBody, li.member.PhysBody, out constrain)) { // If constraint doesn't exist yet, create it. constrain = BuildConstraint(LinksetRoot, li); } li.SetLinkParameters(constrain); constrain.RecomputeConstraintVariables(linksetMass); // PhysicsScene.PE.DumpConstraint(PhysicsScene.World, constrain.Constraint); // DEBUG DEBUG return false; // 'false' says to keep processing other members }); } finally { Rebuilding = false; } } #region Extension public override object Extension(string pFunct, params object[] pParams) { object ret = null; switch (pFunct) { // pParams = [ BSPhysObject root, BSPhysObject child, integer linkType ] case ExtendedPhysics.PhysFunctChangeLinkType: if (pParams.Length > 2) { int requestedType = (int)pParams[2]; DetailLog("{0},BSLinksetConstraint.ChangeLinkType,requestedType={1}", LinksetRoot.LocalID, requestedType); if (requestedType == (int)ConstraintType.BS_FIXED_CONSTRAINT_TYPE || requestedType == (int)ConstraintType.D6_CONSTRAINT_TYPE || requestedType == (int)ConstraintType.D6_SPRING_CONSTRAINT_TYPE || requestedType == (int)ConstraintType.HINGE_CONSTRAINT_TYPE || requestedType == (int)ConstraintType.CONETWIST_CONSTRAINT_TYPE || requestedType == (int)ConstraintType.SLIDER_CONSTRAINT_TYPE) { BSPrimLinkable child = pParams[1] as BSPrimLinkable; if (child != null) { DetailLog("{0},BSLinksetConstraint.ChangeLinkType,rootID={1},childID={2},type={3}", LinksetRoot.LocalID, LinksetRoot.LocalID, child.LocalID, requestedType); m_physicsScene.TaintedObject(child.LocalID, "BSLinksetConstraint.PhysFunctChangeLinkType", delegate() { // Pick up all the constraints currently created. RemoveDependencies(child); BSLinkInfo linkInfo = null; if (TryGetLinkInfo(child, out linkInfo)) { BSLinkInfoConstraint linkInfoC = linkInfo as BSLinkInfoConstraint; if (linkInfoC != null) { linkInfoC.constraintType = (ConstraintType)requestedType; ret = (object)true; DetailLog("{0},BSLinksetConstraint.ChangeLinkType,link={1},type={2}", linkInfo.member.LocalID, linkInfo.member.LocalID, linkInfoC.constraintType); } else { DetailLog("{0},BSLinksetConstraint.ChangeLinkType,linkInfoNotConstraint,childID={1}", LinksetRoot.LocalID, child.LocalID); } } else { DetailLog("{0},BSLinksetConstraint.ChangeLinkType,noLinkInfoForChild,childID={1}", LinksetRoot.LocalID, child.LocalID); } // Cause the whole linkset to be rebuilt in post-taint time. Refresh(child); }); } else { DetailLog("{0},BSLinksetConstraint.SetLinkType,childNotBSPrimLinkable", LinksetRoot.LocalID); } } else { DetailLog("{0},BSLinksetConstraint.SetLinkType,illegalRequestedType,reqested={1},spring={2}", LinksetRoot.LocalID, requestedType, ((int)ConstraintType.D6_SPRING_CONSTRAINT_TYPE)); } } break; // pParams = [ BSPhysObject root, BSPhysObject child ] case ExtendedPhysics.PhysFunctGetLinkType: if (pParams.Length > 0) { BSPrimLinkable child = pParams[1] as BSPrimLinkable; if (child != null) { BSLinkInfo linkInfo = null; if (TryGetLinkInfo(child, out linkInfo)) { BSLinkInfoConstraint linkInfoC = linkInfo as BSLinkInfoConstraint; if (linkInfoC != null) { ret = (object)(int)linkInfoC.constraintType; DetailLog("{0},BSLinksetConstraint.GetLinkType,link={1},type={2}", linkInfo.member.LocalID, linkInfo.member.LocalID, linkInfoC.constraintType); } } } } break; // pParams = [ BSPhysObject root, BSPhysObject child, int op, object opParams, int op, object opParams, ... ] case ExtendedPhysics.PhysFunctChangeLinkParams: // There should be two parameters: the childActor and a list of parameters to set if (pParams.Length > 2) { BSPrimLinkable child = pParams[1] as BSPrimLinkable; BSLinkInfo baseLinkInfo = null; if (TryGetLinkInfo(child, out baseLinkInfo)) { BSLinkInfoConstraint linkInfo = baseLinkInfo as BSLinkInfoConstraint; if (linkInfo != null) { int valueInt; float valueFloat; bool valueBool; OMV.Vector3 valueVector; OMV.Vector3 valueVector2; OMV.Quaternion valueQuaternion; int axisLow, axisHigh; int opIndex = 2; while (opIndex < pParams.Length) { int thisOp = 0; string errMsg = ""; try { thisOp = (int)pParams[opIndex]; DetailLog("{0},BSLinksetConstraint.ChangeLinkParams2,op={1},val={2}", linkInfo.member.LocalID, thisOp, pParams[opIndex + 1]); switch (thisOp) { case ExtendedPhysics.PHYS_PARAM_LINK_TYPE: valueInt = (int)pParams[opIndex + 1]; ConstraintType valueType = (ConstraintType)valueInt; if (valueType == ConstraintType.BS_FIXED_CONSTRAINT_TYPE || valueType == ConstraintType.D6_CONSTRAINT_TYPE || valueType == ConstraintType.D6_SPRING_CONSTRAINT_TYPE || valueType == ConstraintType.HINGE_CONSTRAINT_TYPE || valueType == ConstraintType.CONETWIST_CONSTRAINT_TYPE || valueType == ConstraintType.SLIDER_CONSTRAINT_TYPE) { linkInfo.constraintType = valueType; } opIndex += 2; break; case ExtendedPhysics.PHYS_PARAM_FRAMEINA_LOC: errMsg = "PHYS_PARAM_FRAMEINA_LOC takes one parameter of type vector"; valueVector = (OMV.Vector3)pParams[opIndex + 1]; linkInfo.frameInAloc = valueVector; opIndex += 2; break; case ExtendedPhysics.PHYS_PARAM_FRAMEINA_ROT: errMsg = "PHYS_PARAM_FRAMEINA_ROT takes one parameter of type rotation"; valueQuaternion = (OMV.Quaternion)pParams[opIndex + 1]; linkInfo.frameInArot = valueQuaternion; opIndex += 2; break; case ExtendedPhysics.PHYS_PARAM_FRAMEINB_LOC: errMsg = "PHYS_PARAM_FRAMEINB_LOC takes one parameter of type vector"; valueVector = (OMV.Vector3)pParams[opIndex + 1]; linkInfo.frameInBloc = valueVector; opIndex += 2; break; case ExtendedPhysics.PHYS_PARAM_FRAMEINB_ROT: errMsg = "PHYS_PARAM_FRAMEINB_ROT takes one parameter of type rotation"; valueQuaternion = (OMV.Quaternion)pParams[opIndex + 1]; linkInfo.frameInBrot = valueQuaternion; opIndex += 2; break; case ExtendedPhysics.PHYS_PARAM_LINEAR_LIMIT_LOW: errMsg = "PHYS_PARAM_LINEAR_LIMIT_LOW takes one parameter of type vector"; valueVector = (OMV.Vector3)pParams[opIndex + 1]; linkInfo.linearLimitLow = valueVector; opIndex += 2; break; case ExtendedPhysics.PHYS_PARAM_LINEAR_LIMIT_HIGH: errMsg = "PHYS_PARAM_LINEAR_LIMIT_HIGH takes one parameter of type vector"; valueVector = (OMV.Vector3)pParams[opIndex + 1]; linkInfo.linearLimitHigh = valueVector; opIndex += 2; break; case ExtendedPhysics.PHYS_PARAM_ANGULAR_LIMIT_LOW: errMsg = "PHYS_PARAM_ANGULAR_LIMIT_LOW takes one parameter of type vector"; valueVector = (OMV.Vector3)pParams[opIndex + 1]; linkInfo.angularLimitLow = valueVector; opIndex += 2; break; case ExtendedPhysics.PHYS_PARAM_ANGULAR_LIMIT_HIGH: errMsg = "PHYS_PARAM_ANGULAR_LIMIT_HIGH takes one parameter of type vector"; valueVector = (OMV.Vector3)pParams[opIndex + 1]; linkInfo.angularLimitHigh = valueVector; opIndex += 2; break; case ExtendedPhysics.PHYS_PARAM_USE_FRAME_OFFSET: errMsg = "PHYS_PARAM_USE_FRAME_OFFSET takes one parameter of type integer (bool)"; valueBool = ((int)pParams[opIndex + 1]) != 0; linkInfo.useFrameOffset = valueBool; opIndex += 2; break; case ExtendedPhysics.PHYS_PARAM_ENABLE_TRANSMOTOR: errMsg = "PHYS_PARAM_ENABLE_TRANSMOTOR takes one parameter of type integer (bool)"; valueBool = ((int)pParams[opIndex + 1]) != 0; linkInfo.enableTransMotor = valueBool; opIndex += 2; break; case ExtendedPhysics.PHYS_PARAM_TRANSMOTOR_MAXVEL: errMsg = "PHYS_PARAM_TRANSMOTOR_MAXVEL takes one parameter of type float"; valueFloat = (float)pParams[opIndex + 1]; linkInfo.transMotorMaxVel = valueFloat; opIndex += 2; break; case ExtendedPhysics.PHYS_PARAM_TRANSMOTOR_MAXFORCE: errMsg = "PHYS_PARAM_TRANSMOTOR_MAXFORCE takes one parameter of type float"; valueFloat = (float)pParams[opIndex + 1]; linkInfo.transMotorMaxForce = valueFloat; opIndex += 2; break; case ExtendedPhysics.PHYS_PARAM_CFM: errMsg = "PHYS_PARAM_CFM takes one parameter of type float"; valueFloat = (float)pParams[opIndex + 1]; linkInfo.cfm = valueFloat; opIndex += 2; break; case ExtendedPhysics.PHYS_PARAM_ERP: errMsg = "PHYS_PARAM_ERP takes one parameter of type float"; valueFloat = (float)pParams[opIndex + 1]; linkInfo.erp = valueFloat; opIndex += 2; break; case ExtendedPhysics.PHYS_PARAM_SOLVER_ITERATIONS: errMsg = "PHYS_PARAM_SOLVER_ITERATIONS takes one parameter of type float"; valueFloat = (float)pParams[opIndex + 1]; linkInfo.solverIterations = valueFloat; opIndex += 2; break; case ExtendedPhysics.PHYS_PARAM_SPRING_AXIS_ENABLE: errMsg = "PHYS_PARAM_SPRING_AXIS_ENABLE takes two parameters of types integer and integer (bool)"; valueInt = (int)pParams[opIndex + 1]; valueBool = ((int)pParams[opIndex + 2]) != 0; GetAxisRange(valueInt, out axisLow, out axisHigh); for (int ii = axisLow; ii <= axisHigh; ii++) linkInfo.springAxisEnable[ii] = valueBool; opIndex += 3; break; case ExtendedPhysics.PHYS_PARAM_SPRING_DAMPING: errMsg = "PHYS_PARAM_SPRING_DAMPING takes two parameters of types integer and float"; valueInt = (int)pParams[opIndex + 1]; valueFloat = (float)pParams[opIndex + 2]; GetAxisRange(valueInt, out axisLow, out axisHigh); for (int ii = axisLow; ii <= axisHigh; ii++) linkInfo.springDamping[ii] = valueFloat; opIndex += 3; break; case ExtendedPhysics.PHYS_PARAM_SPRING_STIFFNESS: errMsg = "PHYS_PARAM_SPRING_STIFFNESS takes two parameters of types integer and float"; valueInt = (int)pParams[opIndex + 1]; valueFloat = (float)pParams[opIndex + 2]; GetAxisRange(valueInt, out axisLow, out axisHigh); for (int ii = axisLow; ii <= axisHigh; ii++) linkInfo.springStiffness[ii] = valueFloat; opIndex += 3; break; case ExtendedPhysics.PHYS_PARAM_SPRING_EQUILIBRIUM_POINT: errMsg = "PHYS_PARAM_SPRING_EQUILIBRIUM_POINT takes two parameters of type vector"; valueVector = (OMV.Vector3)pParams[opIndex + 1]; valueVector2 = (OMV.Vector3)pParams[opIndex + 2]; linkInfo.springLinearEquilibriumPoint = valueVector; linkInfo.springAngularEquilibriumPoint = valueVector2; opIndex += 3; break; case ExtendedPhysics.PHYS_PARAM_USE_LINEAR_FRAMEA: errMsg = "PHYS_PARAM_USE_LINEAR_FRAMEA takes one parameter of type integer (bool)"; valueBool = ((int)pParams[opIndex + 1]) != 0; linkInfo.useLinearReferenceFrameA = valueBool; opIndex += 2; break; default: break; } } catch (InvalidCastException e) { m_physicsScene.Logger.WarnFormat("{0} value of wrong type in physSetLinksetParams: {1}, err={2}", LogHeader, errMsg, e); } catch (Exception e) { m_physicsScene.Logger.WarnFormat("{0} bad parameters in physSetLinksetParams: {1}", LogHeader, e); } } } // Something changed so a rebuild is in order Refresh(child); } } break; default: ret = base.Extension(pFunct, pParams); break; } return ret; } // Bullet constraints keep some limit parameters for each linear and angular axis. // Setting same is easier if there is an easy way to see all or types. // This routine returns the array limits for the set of axis. private void GetAxisRange(int rangeSpec, out int low, out int high) { switch (rangeSpec) { case ExtendedPhysics.PHYS_AXIS_LINEAR_ALL: low = 0; high = 2; break; case ExtendedPhysics.PHYS_AXIS_ANGULAR_ALL: low = 3; high = 5; break; case ExtendedPhysics.PHYS_AXIS_ALL: low = 0; high = 5; break; default: low = high = rangeSpec; break; } return; } #endregion // Extension } }