123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266 |
- /* boost random/inversive_congruential.hpp header file
- *
- * Copyright Jens Maurer 2000-2001
- * Distributed under the Boost Software License, Version 1.0. (See
- * accompanying file LICENSE_1_0.txt or copy at
- * http://www.boost.org/LICENSE_1_0.txt)
- *
- * See http://www.boost.org for most recent version including documentation.
- *
- * $Id$
- *
- * Revision history
- * 2001-02-18 moved to individual header files
- */
- #ifndef BOOST_RANDOM_INVERSIVE_CONGRUENTIAL_HPP
- #define BOOST_RANDOM_INVERSIVE_CONGRUENTIAL_HPP
- #include <iosfwd>
- #include <stdexcept>
- #include <boost/assert.hpp>
- #include <boost/config.hpp>
- #include <boost/cstdint.hpp>
- #include <boost/random/detail/config.hpp>
- #include <boost/random/detail/const_mod.hpp>
- #include <boost/random/detail/seed.hpp>
- #include <boost/random/detail/operators.hpp>
- #include <boost/random/detail/seed_impl.hpp>
- #include <boost/random/detail/disable_warnings.hpp>
- namespace boost {
- namespace random {
- // Eichenauer and Lehn 1986
- /**
- * Instantiations of class template @c inversive_congruential_engine model a
- * \pseudo_random_number_generator. It uses the inversive congruential
- * algorithm (ICG) described in
- *
- * @blockquote
- * "Inversive pseudorandom number generators: concepts, results and links",
- * Peter Hellekalek, In: "Proceedings of the 1995 Winter Simulation
- * Conference", C. Alexopoulos, K. Kang, W.R. Lilegdon, and D. Goldsman
- * (editors), 1995, pp. 255-262. ftp://random.mat.sbg.ac.at/pub/data/wsc95.ps
- * @endblockquote
- *
- * The output sequence is defined by x(n+1) = (a*inv(x(n)) - b) (mod p),
- * where x(0), a, b, and the prime number p are parameters of the generator.
- * The expression inv(k) denotes the multiplicative inverse of k in the
- * field of integer numbers modulo p, with inv(0) := 0.
- *
- * The template parameter IntType shall denote a signed integral type large
- * enough to hold p; a, b, and p are the parameters of the generators. The
- * template parameter val is the validation value checked by validation.
- *
- * @xmlnote
- * The implementation currently uses the Euclidian Algorithm to compute
- * the multiplicative inverse. Therefore, the inversive generators are about
- * 10-20 times slower than the others (see section"performance"). However,
- * the paper talks of only 3x slowdown, so the Euclidian Algorithm is probably
- * not optimal for calculating the multiplicative inverse.
- * @endxmlnote
- */
- template<class IntType, IntType a, IntType b, IntType p>
- class inversive_congruential_engine
- {
- public:
- typedef IntType result_type;
- BOOST_STATIC_CONSTANT(bool, has_fixed_range = false);
- BOOST_STATIC_CONSTANT(result_type, multiplier = a);
- BOOST_STATIC_CONSTANT(result_type, increment = b);
- BOOST_STATIC_CONSTANT(result_type, modulus = p);
- BOOST_STATIC_CONSTANT(IntType, default_seed = 1);
- static BOOST_CONSTEXPR result_type min BOOST_PREVENT_MACRO_SUBSTITUTION () { return b == 0 ? 1 : 0; }
- static BOOST_CONSTEXPR result_type max BOOST_PREVENT_MACRO_SUBSTITUTION () { return p-1; }
-
- /**
- * Constructs an @c inversive_congruential_engine, seeding it with
- * the default seed.
- */
- inversive_congruential_engine() { seed(); }
- /**
- * Constructs an @c inversive_congruential_engine, seeding it with @c x0.
- */
- BOOST_RANDOM_DETAIL_ARITHMETIC_CONSTRUCTOR(inversive_congruential_engine,
- IntType, x0)
- { seed(x0); }
-
- /**
- * Constructs an @c inversive_congruential_engine, seeding it with values
- * produced by a call to @c seq.generate().
- */
- BOOST_RANDOM_DETAIL_SEED_SEQ_CONSTRUCTOR(inversive_congruential_engine,
- SeedSeq, seq)
- { seed(seq); }
-
- /**
- * Constructs an @c inversive_congruential_engine, seeds it
- * with values taken from the itrator range [first, last),
- * and adjusts first to point to the element after the last one
- * used. If there are not enough elements, throws @c std::invalid_argument.
- *
- * first and last must be input iterators.
- */
- template<class It> inversive_congruential_engine(It& first, It last)
- { seed(first, last); }
- /**
- * Calls seed(default_seed)
- */
- void seed() { seed(default_seed); }
-
- /**
- * If c mod m is zero and x0 mod m is zero, changes the current value of
- * the generator to 1. Otherwise, changes it to x0 mod m. If c is zero,
- * distinct seeds in the range [1,m) will leave the generator in distinct
- * states. If c is not zero, the range is [0,m).
- */
- BOOST_RANDOM_DETAIL_ARITHMETIC_SEED(inversive_congruential_engine, IntType, x0)
- {
- // wrap _x if it doesn't fit in the destination
- if(modulus == 0) {
- _value = x0;
- } else {
- _value = x0 % modulus;
- }
- // handle negative seeds
- if(_value < 0) {
- _value += modulus;
- }
- // adjust to the correct range
- if(increment == 0 && _value == 0) {
- _value = 1;
- }
- BOOST_ASSERT(_value >= (min)());
- BOOST_ASSERT(_value <= (max)());
- }
- /**
- * Seeds an @c inversive_congruential_engine using values from a SeedSeq.
- */
- BOOST_RANDOM_DETAIL_SEED_SEQ_SEED(inversive_congruential_engine, SeedSeq, seq)
- { seed(detail::seed_one_int<IntType, modulus>(seq)); }
-
- /**
- * seeds an @c inversive_congruential_engine with values taken
- * from the itrator range [first, last) and adjusts @c first to
- * point to the element after the last one used. If there are
- * not enough elements, throws @c std::invalid_argument.
- *
- * @c first and @c last must be input iterators.
- */
- template<class It> void seed(It& first, It last)
- { seed(detail::get_one_int<IntType, modulus>(first, last)); }
- /** Returns the next output of the generator. */
- IntType operator()()
- {
- typedef const_mod<IntType, p> do_mod;
- _value = do_mod::mult_add(a, do_mod::invert(_value), b);
- return _value;
- }
-
- /** Fills a range with random values */
- template<class Iter>
- void generate(Iter first, Iter last)
- { detail::generate_from_int(*this, first, last); }
- /** Advances the state of the generator by @c z. */
- void discard(boost::uintmax_t z)
- {
- for(boost::uintmax_t j = 0; j < z; ++j) {
- (*this)();
- }
- }
- /**
- * Writes the textual representation of the generator to a @c std::ostream.
- */
- BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, inversive_congruential_engine, x)
- {
- os << x._value;
- return os;
- }
- /**
- * Reads the textual representation of the generator from a @c std::istream.
- */
- BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, inversive_congruential_engine, x)
- {
- is >> x._value;
- return is;
- }
- /**
- * Returns true if the two generators will produce identical
- * sequences of outputs.
- */
- BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(inversive_congruential_engine, x, y)
- { return x._value == y._value; }
- /**
- * Returns true if the two generators will produce different
- * sequences of outputs.
- */
- BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(inversive_congruential_engine)
- private:
- IntType _value;
- };
- #ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
- // A definition is required even for integral static constants
- template<class IntType, IntType a, IntType b, IntType p>
- const bool inversive_congruential_engine<IntType, a, b, p>::has_fixed_range;
- template<class IntType, IntType a, IntType b, IntType p>
- const typename inversive_congruential_engine<IntType, a, b, p>::result_type inversive_congruential_engine<IntType, a, b, p>::multiplier;
- template<class IntType, IntType a, IntType b, IntType p>
- const typename inversive_congruential_engine<IntType, a, b, p>::result_type inversive_congruential_engine<IntType, a, b, p>::increment;
- template<class IntType, IntType a, IntType b, IntType p>
- const typename inversive_congruential_engine<IntType, a, b, p>::result_type inversive_congruential_engine<IntType, a, b, p>::modulus;
- template<class IntType, IntType a, IntType b, IntType p>
- const typename inversive_congruential_engine<IntType, a, b, p>::result_type inversive_congruential_engine<IntType, a, b, p>::default_seed;
- #endif
- /// \cond show_deprecated
- // provided for backwards compatibility
- template<class IntType, IntType a, IntType b, IntType p, IntType val = 0>
- class inversive_congruential : public inversive_congruential_engine<IntType, a, b, p>
- {
- typedef inversive_congruential_engine<IntType, a, b, p> base_type;
- public:
- inversive_congruential(IntType x0 = 1) : base_type(x0) {}
- template<class It>
- inversive_congruential(It& first, It last) : base_type(first, last) {}
- };
- /// \endcond
- /**
- * The specialization hellekalek1995 was suggested in
- *
- * @blockquote
- * "Inversive pseudorandom number generators: concepts, results and links",
- * Peter Hellekalek, In: "Proceedings of the 1995 Winter Simulation
- * Conference", C. Alexopoulos, K. Kang, W.R. Lilegdon, and D. Goldsman
- * (editors), 1995, pp. 255-262. ftp://random.mat.sbg.ac.at/pub/data/wsc95.ps
- * @endblockquote
- */
- typedef inversive_congruential_engine<uint32_t, 9102, 2147483647-36884165,
- 2147483647> hellekalek1995;
- } // namespace random
- using random::hellekalek1995;
- } // namespace boost
- #include <boost/random/detail/enable_warnings.hpp>
- #endif // BOOST_RANDOM_INVERSIVE_CONGRUENTIAL_HPP
|