123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797 |
- // Copyright (c) 2006 Xiaogang Zhang
- // Copyright (c) 2006 John Maddock
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- //
- // History:
- // XZ wrote the original of this file as part of the Google
- // Summer of Code 2006. JM modified it to fit into the
- // Boost.Math conceptual framework better, and to ensure
- // that the code continues to work no matter how many digits
- // type T has.
- #ifndef BOOST_MATH_ELLINT_1_HPP
- #define BOOST_MATH_ELLINT_1_HPP
- #ifdef _MSC_VER
- #pragma once
- #endif
- #include <boost/math/special_functions/math_fwd.hpp>
- #include <boost/math/special_functions/ellint_rf.hpp>
- #include <boost/math/constants/constants.hpp>
- #include <boost/math/policies/error_handling.hpp>
- #include <boost/math/tools/workaround.hpp>
- #include <boost/math/special_functions/round.hpp>
- // Elliptic integrals (complete and incomplete) of the first kind
- // Carlson, Numerische Mathematik, vol 33, 1 (1979)
- namespace boost { namespace math {
- template <class T1, class T2, class Policy>
- typename tools::promote_args<T1, T2>::type ellint_1(T1 k, T2 phi, const Policy& pol);
- namespace detail{
- template <typename T, typename Policy>
- T ellint_k_imp(T k, const Policy& pol, std::integral_constant<int, 0> const&);
- template <typename T, typename Policy>
- T ellint_k_imp(T k, const Policy& pol, std::integral_constant<int, 1> const&);
- template <typename T, typename Policy>
- T ellint_k_imp(T k, const Policy& pol, std::integral_constant<int, 2> const&);
- // Elliptic integral (Legendre form) of the first kind
- template <typename T, typename Policy>
- T ellint_f_imp(T phi, T k, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- using namespace boost::math::tools;
- using namespace boost::math::constants;
- static const char* function = "boost::math::ellint_f<%1%>(%1%,%1%)";
- BOOST_MATH_INSTRUMENT_VARIABLE(phi);
- BOOST_MATH_INSTRUMENT_VARIABLE(k);
- BOOST_MATH_INSTRUMENT_VARIABLE(function);
- bool invert = false;
- if(phi < 0)
- {
- BOOST_MATH_INSTRUMENT_VARIABLE(phi);
- phi = fabs(phi);
- invert = true;
- }
- T result;
- if(phi >= tools::max_value<T>())
- {
- // Need to handle infinity as a special case:
- result = policies::raise_overflow_error<T>(function, nullptr, pol);
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- }
- else if(phi > 1 / tools::epsilon<T>())
- {
- // Phi is so large that phi%pi is necessarily zero (or garbage),
- // just return the second part of the duplication formula:
- typedef std::integral_constant<int,
- std::is_floating_point<T>::value&& std::numeric_limits<T>::digits && (std::numeric_limits<T>::digits <= 54) ? 0 :
- std::is_floating_point<T>::value && std::numeric_limits<T>::digits && (std::numeric_limits<T>::digits <= 64) ? 1 : 2
- > precision_tag_type;
- result = 2 * phi * ellint_k_imp(k, pol, precision_tag_type()) / constants::pi<T>();
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- }
- else
- {
- // Carlson's algorithm works only for |phi| <= pi/2,
- // use the integrand's periodicity to normalize phi
- //
- // Xiaogang's original code used a cast to long long here
- // but that fails if T has more digits than a long long,
- // so rewritten to use fmod instead:
- //
- BOOST_MATH_INSTRUMENT_CODE("pi/2 = " << constants::pi<T>() / 2);
- T rphi = boost::math::tools::fmod_workaround(phi, T(constants::half_pi<T>()));
- BOOST_MATH_INSTRUMENT_VARIABLE(rphi);
- T m = boost::math::round((phi - rphi) / constants::half_pi<T>());
- BOOST_MATH_INSTRUMENT_VARIABLE(m);
- int s = 1;
- if(boost::math::tools::fmod_workaround(m, T(2)) > T(0.5))
- {
- m += 1;
- s = -1;
- rphi = constants::half_pi<T>() - rphi;
- BOOST_MATH_INSTRUMENT_VARIABLE(rphi);
- }
- T sinp = sin(rphi);
- sinp *= sinp;
- if (sinp * k * k >= 1)
- {
- return policies::raise_domain_error<T>(function,
- "Got k^2 * sin^2(phi) = %1%, but the function requires this < 1", sinp * k * k, pol);
- }
- T cosp = cos(rphi);
- cosp *= cosp;
- BOOST_MATH_INSTRUMENT_VARIABLE(sinp);
- BOOST_MATH_INSTRUMENT_VARIABLE(cosp);
- if(sinp > tools::min_value<T>())
- {
- BOOST_MATH_ASSERT(rphi != 0); // precondition, can't be true if sin(rphi) != 0.
- //
- // Use http://dlmf.nist.gov/19.25#E5, note that
- // c-1 simplifies to cot^2(rphi) which avoid cancellation:
- //
- T c = 1 / sinp;
- result = static_cast<T>(s * ellint_rf_imp(T(cosp / sinp), T(c - k * k), c, pol));
- }
- else
- result = s * sin(rphi);
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- if(m != 0)
- {
- typedef std::integral_constant<int,
- std::is_floating_point<T>::value&& std::numeric_limits<T>::digits && (std::numeric_limits<T>::digits <= 54) ? 0 :
- std::is_floating_point<T>::value && std::numeric_limits<T>::digits && (std::numeric_limits<T>::digits <= 64) ? 1 : 2
- > precision_tag_type;
- result += m * ellint_k_imp(k, pol, precision_tag_type());
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- }
- }
- return invert ? T(-result) : result;
- }
- // Complete elliptic integral (Legendre form) of the first kind
- template <typename T, typename Policy>
- T ellint_k_imp(T k, const Policy& pol, std::integral_constant<int, 2> const&)
- {
- BOOST_MATH_STD_USING
- using namespace boost::math::tools;
- static const char* function = "boost::math::ellint_k<%1%>(%1%)";
- if (abs(k) > 1)
- {
- return policies::raise_domain_error<T>(function, "Got k = %1%, function requires |k| <= 1", k, pol);
- }
- if (abs(k) == 1)
- {
- return policies::raise_overflow_error<T>(function, nullptr, pol);
- }
- T x = 0;
- T y = 1 - k * k;
- T z = 1;
- T value = ellint_rf_imp(x, y, z, pol);
- return value;
- }
- //
- // Special versions for double and 80-bit long double precision,
- // double precision versions use the coefficients from:
- // "Fast computation of complete elliptic integrals and Jacobian elliptic functions",
- // Celestial Mechanics and Dynamical Astronomy, April 2012.
- //
- // Higher precision coefficients for 80-bit long doubles can be calculated
- // using for example:
- // Table[N[SeriesCoefficient[ EllipticK [ m ], { m, 875/1000, i} ], 20], {i, 0, 24}]
- // and checking the value of the first neglected term with:
- // N[SeriesCoefficient[ EllipticK [ m ], { m, 875/1000, 24} ], 20] * (2.5/100)^24
- //
- // For m > 0.9 we don't use the method of the paper above, but simply call our
- // existing routines. The routine used in the above paper was tried (and is
- // archived in the code below), but was found to have slightly higher error rates.
- //
- template <typename T, typename Policy>
- BOOST_MATH_FORCEINLINE T ellint_k_imp(T k, const Policy& pol, std::integral_constant<int, 0> const&)
- {
- using std::abs;
- using namespace boost::math::tools;
- T m = k * k;
- switch (static_cast<int>(m * 20))
- {
- case 0:
- case 1:
- //if (m < 0.1)
- {
- constexpr T coef[] =
- {
- static_cast<T>(1.591003453790792180),
- static_cast<T>(0.416000743991786912),
- static_cast<T>(0.245791514264103415),
- static_cast<T>(0.179481482914906162),
- static_cast<T>(0.144556057087555150),
- static_cast<T>(0.123200993312427711),
- static_cast<T>(0.108938811574293531),
- static_cast<T>(0.098853409871592910),
- static_cast<T>(0.091439629201749751),
- static_cast<T>(0.085842591595413900),
- static_cast<T>(0.081541118718303215),
- static_cast<T>(0.078199656811256481910)
- };
- return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.05));
- }
- case 2:
- case 3:
- //else if (m < 0.2)
- {
- constexpr T coef[] =
- {
- static_cast<T>(1.635256732264579992),
- static_cast<T>(0.471190626148732291),
- static_cast<T>(0.309728410831499587),
- static_cast<T>(0.252208311773135699),
- static_cast<T>(0.226725623219684650),
- static_cast<T>(0.215774446729585976),
- static_cast<T>(0.213108771877348910),
- static_cast<T>(0.216029124605188282),
- static_cast<T>(0.223255831633057896),
- static_cast<T>(0.234180501294209925),
- static_cast<T>(0.248557682972264071),
- static_cast<T>(0.266363809892617521)
- };
- return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.15));
- }
- case 4:
- case 5:
- //else if (m < 0.3)
- {
- constexpr T coef[] =
- {
- static_cast<T>(1.685750354812596043),
- static_cast<T>(0.541731848613280329),
- static_cast<T>(0.401524438390690257),
- static_cast<T>(0.369642473420889090),
- static_cast<T>(0.376060715354583645),
- static_cast<T>(0.405235887085125919),
- static_cast<T>(0.453294381753999079),
- static_cast<T>(0.520518947651184205),
- static_cast<T>(0.609426039204995055),
- static_cast<T>(0.724263522282908870),
- static_cast<T>(0.871013847709812357),
- static_cast<T>(1.057652872753547036)
- };
- return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.25));
- }
- case 6:
- case 7:
- //else if (m < 0.4)
- {
- constexpr T coef[] =
- {
- static_cast<T>(1.744350597225613243),
- static_cast<T>(0.634864275371935304),
- static_cast<T>(0.539842564164445538),
- static_cast<T>(0.571892705193787391),
- static_cast<T>(0.670295136265406100),
- static_cast<T>(0.832586590010977199),
- static_cast<T>(1.073857448247933265),
- static_cast<T>(1.422091460675497751),
- static_cast<T>(1.920387183402304829),
- static_cast<T>(2.632552548331654201),
- static_cast<T>(3.652109747319039160),
- static_cast<T>(5.115867135558865806),
- static_cast<T>(7.224080007363877411)
- };
- return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.35));
- }
- case 8:
- case 9:
- //else if (m < 0.5)
- {
- constexpr T coef[] =
- {
- static_cast<T>(1.813883936816982644),
- static_cast<T>(0.763163245700557246),
- static_cast<T>(0.761928605321595831),
- static_cast<T>(0.951074653668427927),
- static_cast<T>(1.315180671703161215),
- static_cast<T>(1.928560693477410941),
- static_cast<T>(2.937509342531378755),
- static_cast<T>(4.594894405442878062),
- static_cast<T>(7.330071221881720772),
- static_cast<T>(11.87151259742530180),
- static_cast<T>(19.45851374822937738),
- static_cast<T>(32.20638657246426863),
- static_cast<T>(53.73749198700554656),
- static_cast<T>(90.27388602940998849)
- };
- return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.45));
- }
- case 10:
- case 11:
- //else if (m < 0.6)
- {
- constexpr T coef[] =
- {
- static_cast<T>(1.898924910271553526),
- static_cast<T>(0.950521794618244435),
- static_cast<T>(1.151077589959015808),
- static_cast<T>(1.750239106986300540),
- static_cast<T>(2.952676812636875180),
- static_cast<T>(5.285800396121450889),
- static_cast<T>(9.832485716659979747),
- static_cast<T>(18.78714868327559562),
- static_cast<T>(36.61468615273698145),
- static_cast<T>(72.45292395127771801),
- static_cast<T>(145.1079577347069102),
- static_cast<T>(293.4786396308497026),
- static_cast<T>(598.3851815055010179),
- static_cast<T>(1228.420013075863451),
- static_cast<T>(2536.529755382764488)
- };
- return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.55));
- }
- case 12:
- case 13:
- //else if (m < 0.7)
- {
- constexpr T coef[] =
- {
- static_cast<T>(2.007598398424376302),
- static_cast<T>(1.248457231212347337),
- static_cast<T>(1.926234657076479729),
- static_cast<T>(3.751289640087587680),
- static_cast<T>(8.119944554932045802),
- static_cast<T>(18.66572130873555361),
- static_cast<T>(44.60392484291437063),
- static_cast<T>(109.5092054309498377),
- static_cast<T>(274.2779548232413480),
- static_cast<T>(697.5598008606326163),
- static_cast<T>(1795.716014500247129),
- static_cast<T>(4668.381716790389910),
- static_cast<T>(12235.76246813664335),
- static_cast<T>(32290.17809718320818),
- static_cast<T>(85713.07608195964685),
- static_cast<T>(228672.1890493117096),
- static_cast<T>(612757.2711915852774)
- };
- return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.65));
- }
- case 14:
- case 15:
- //else if (m < static_cast<T>(0.8))
- {
- constexpr T coef[] =
- {
- static_cast<T>(2.156515647499643235),
- static_cast<T>(1.791805641849463243),
- static_cast<T>(3.826751287465713147),
- static_cast<T>(10.38672468363797208),
- static_cast<T>(31.40331405468070290),
- static_cast<T>(100.9237039498695416),
- static_cast<T>(337.3268282632272897),
- static_cast<T>(1158.707930567827917),
- static_cast<T>(4060.990742193632092),
- static_cast<T>(14454.00184034344795),
- static_cast<T>(52076.66107599404803),
- static_cast<T>(189493.6591462156887),
- static_cast<T>(695184.5762413896145),
- static_cast<T>(2567994.048255284686),
- static_cast<T>(9541921.966748386322),
- static_cast<T>(35634927.44218076174),
- static_cast<T>(133669298.4612040871),
- static_cast<T>(503352186.6866284541),
- static_cast<T>(1901975729.538660119),
- static_cast<T>(7208915015.330103756)
- };
- return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.75));
- }
- case 16:
- //else if (m < static_cast<T>(0.85))
- {
- constexpr T coef[] =
- {
- static_cast<T>(2.318122621712510589),
- static_cast<T>(2.616920150291232841),
- static_cast<T>(7.897935075731355823),
- static_cast<T>(30.50239715446672327),
- static_cast<T>(131.4869365523528456),
- static_cast<T>(602.9847637356491617),
- static_cast<T>(2877.024617809972641),
- static_cast<T>(14110.51991915180325),
- static_cast<T>(70621.44088156540229),
- static_cast<T>(358977.2665825309926),
- static_cast<T>(1847238.263723971684),
- static_cast<T>(9600515.416049214109),
- static_cast<T>(50307677.08502366879),
- static_cast<T>(265444188.6527127967),
- static_cast<T>(1408862325.028702687),
- static_cast<T>(7515687935.373774627)
- };
- return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.825));
- }
- case 17:
- //else if (m < static_cast<T>(0.90))
- {
- constexpr T coef[] =
- {
- static_cast<T>(2.473596173751343912),
- static_cast<T>(3.727624244118099310),
- static_cast<T>(15.60739303554930496),
- static_cast<T>(84.12850842805887747),
- static_cast<T>(506.9818197040613935),
- static_cast<T>(3252.277058145123644),
- static_cast<T>(21713.24241957434256),
- static_cast<T>(149037.0451890932766),
- static_cast<T>(1043999.331089990839),
- static_cast<T>(7427974.817042038995),
- static_cast<T>(53503839.67558661151),
- static_cast<T>(389249886.9948708474),
- static_cast<T>(2855288351.100810619),
- static_cast<T>(21090077038.76684053),
- static_cast<T>(156699833947.7902014),
- static_cast<T>(1170222242422.439893),
- static_cast<T>(8777948323668.937971),
- static_cast<T>(66101242752484.95041),
- static_cast<T>(499488053713388.7989),
- static_cast<T>(37859743397240299.20)
- };
- return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.875));
- }
- default:
- //
- // This handles all cases where m > 0.9,
- // including all error handling:
- //
- return ellint_k_imp(k, pol, std::integral_constant<int, 2>());
- #if 0
- else
- {
- T lambda_prime = (1 - sqrt(k)) / (2 * (1 + sqrt(k)));
- T k_prime = ellint_k(sqrt((1 - k) * (1 + k))); // K(m')
- T lambda_prime_4th = boost::math::pow<4>(lambda_prime);
- T q_prime = ((((((20910 * lambda_prime_4th) + 1707) * lambda_prime_4th + 150) * lambda_prime_4th + 15) * lambda_prime_4th + 2) * lambda_prime_4th + 1) * lambda_prime;
- /*T q_prime_2 = lambda_prime
- + 2 * boost::math::pow<5>(lambda_prime)
- + 15 * boost::math::pow<9>(lambda_prime)
- + 150 * boost::math::pow<13>(lambda_prime)
- + 1707 * boost::math::pow<17>(lambda_prime)
- + 20910 * boost::math::pow<21>(lambda_prime);*/
- return -log(q_prime) * k_prime / boost::math::constants::pi<T>();
- }
- #endif
- }
- }
- template <typename T, typename Policy>
- BOOST_MATH_FORCEINLINE T ellint_k_imp(T k, const Policy& pol, std::integral_constant<int, 1> const&)
- {
- using std::abs;
- using namespace boost::math::tools;
- T m = k * k;
- switch (static_cast<int>(m * 20))
- {
- case 0:
- case 1:
- {
- constexpr T coef[] =
- {
- 1.5910034537907921801L,
- 0.41600074399178691174L,
- 0.24579151426410341536L,
- 0.17948148291490616181L,
- 0.14455605708755514976L,
- 0.12320099331242771115L,
- 0.10893881157429353105L,
- 0.098853409871592910399L,
- 0.091439629201749751268L,
- 0.085842591595413899672L,
- 0.081541118718303214749L,
- 0.078199656811256481910L,
- 0.075592617535422415648L,
- 0.073562939365441925050L
- };
- return boost::math::tools::evaluate_polynomial(coef, m - 0.05L);
- }
- case 2:
- case 3:
- {
- constexpr T coef[] =
- {
- 1.6352567322645799924L,
- 0.47119062614873229055L,
- 0.30972841083149958708L,
- 0.25220831177313569923L,
- 0.22672562321968464974L,
- 0.21577444672958597588L,
- 0.21310877187734890963L,
- 0.21602912460518828154L,
- 0.22325583163305789567L,
- 0.23418050129420992492L,
- 0.24855768297226407136L,
- 0.26636380989261752077L,
- 0.28772845215611466775L,
- 0.31290024539780334906L,
- 0.34223105446381299902L
- };
- return boost::math::tools::evaluate_polynomial(coef, m - 0.15L);
- }
- case 4:
- case 5:
- {
- constexpr T coef[] =
- {
- 1.6857503548125960429L,
- 0.54173184861328032882L,
- 0.40152443839069025682L,
- 0.36964247342088908995L,
- 0.37606071535458364462L,
- 0.40523588708512591863L,
- 0.45329438175399907924L,
- 0.52051894765118420473L,
- 0.60942603920499505544L,
- 0.72426352228290886975L,
- 0.87101384770981235737L,
- 1.0576528727535470365L,
- 1.2945970872087764321L,
- 1.5953368253888783747L,
- 1.9772844873556364793L,
- 2.4628890581910021287L
- };
- return boost::math::tools::evaluate_polynomial(coef, m - 0.25L);
- }
- case 6:
- case 7:
- {
- constexpr T coef[] =
- {
- 1.7443505972256132429L,
- 0.63486427537193530383L,
- 0.53984256416444553751L,
- 0.57189270519378739093L,
- 0.67029513626540610034L,
- 0.83258659001097719939L,
- 1.0738574482479332654L,
- 1.4220914606754977514L,
- 1.9203871834023048288L,
- 2.6325525483316542006L,
- 3.6521097473190391602L,
- 5.1158671355588658061L,
- 7.2240800073638774108L,
- 10.270306349944787227L,
- 14.685616935355757348L,
- 21.104114212004582734L,
- 30.460132808575799413L,
- };
- return boost::math::tools::evaluate_polynomial(coef, m - 0.35L);
- }
- case 8:
- case 9:
- {
- constexpr T coef[] =
- {
- 1.8138839368169826437L,
- 0.76316324570055724607L,
- 0.76192860532159583095L,
- 0.95107465366842792679L,
- 1.3151806717031612153L,
- 1.9285606934774109412L,
- 2.9375093425313787550L,
- 4.5948944054428780618L,
- 7.3300712218817207718L,
- 11.871512597425301798L,
- 19.458513748229377383L,
- 32.206386572464268628L,
- 53.737491987005546559L,
- 90.273886029409988491L,
- 152.53312130253275268L,
- 259.02388747148299086L,
- 441.78537518096201946L,
- 756.39903981567380952L
- };
- return boost::math::tools::evaluate_polynomial(coef, m - 0.45L);
- }
- case 10:
- case 11:
- {
- constexpr T coef[] =
- {
- 1.8989249102715535257L,
- 0.95052179461824443490L,
- 1.1510775899590158079L,
- 1.7502391069863005399L,
- 2.9526768126368751802L,
- 5.2858003961214508892L,
- 9.8324857166599797471L,
- 18.787148683275595622L,
- 36.614686152736981447L,
- 72.452923951277718013L,
- 145.10795773470691023L,
- 293.47863963084970259L,
- 598.38518150550101790L,
- 1228.4200130758634505L,
- 2536.5297553827644880L,
- 5263.9832725075189576L,
- 10972.138126273491753L,
- 22958.388550988306870L,
- 48203.103373625406989L
- };
- return boost::math::tools::evaluate_polynomial(coef, m - 0.55L);
- }
- case 12:
- case 13:
- {
- constexpr T coef[] =
- {
- 2.0075983984243763017L,
- 1.2484572312123473371L,
- 1.9262346570764797287L,
- 3.7512896400875876798L,
- 8.1199445549320458022L,
- 18.665721308735553611L,
- 44.603924842914370633L,
- 109.50920543094983774L,
- 274.27795482324134804L,
- 697.55980086063261629L,
- 1795.7160145002471293L,
- 4668.3817167903899100L,
- 12235.762468136643348L,
- 32290.178097183208178L,
- 85713.076081959646847L,
- 228672.18904931170958L,
- 612757.27119158527740L,
- 1.6483233976504668314e6L,
- 4.4492251046211960936e6L,
- 1.2046317340783185238e7L,
- 3.2705187507963254185e7L
- };
- return boost::math::tools::evaluate_polynomial(coef, m - 0.65L);
- }
- case 14:
- case 15:
- {
- constexpr T coef[] =
- {
- 2.1565156474996432354L,
- 1.7918056418494632425L,
- 3.8267512874657131470L,
- 10.386724683637972080L,
- 31.403314054680702901L,
- 100.92370394986954165L,
- 337.32682826322728966L,
- 1158.7079305678279173L,
- 4060.9907421936320917L,
- 14454.001840343447947L,
- 52076.661075994048028L,
- 189493.65914621568866L,
- 695184.57624138961450L,
- 2.5679940482552846861e6L,
- 9.5419219667483863221e6L,
- 3.5634927442180761743e7L,
- 1.3366929846120408712e8L,
- 5.0335218668662845411e8L,
- 1.9019757295386601192e9L,
- 7.2089150153301037563e9L,
- 2.7398741806339510931e10L,
- 1.0439286724885300495e11L,
- 3.9864875581513728207e11L,
- 1.5254661585564745591e12L,
- 5.8483259088850315936e12
- };
- return boost::math::tools::evaluate_polynomial(coef, m - 0.75L);
- }
- case 16:
- {
- constexpr T coef[] =
- {
- 2.3181226217125105894L,
- 2.6169201502912328409L,
- 7.8979350757313558232L,
- 30.502397154466723270L,
- 131.48693655235284561L,
- 602.98476373564916170L,
- 2877.0246178099726410L,
- 14110.519919151803247L,
- 70621.440881565402289L,
- 358977.26658253099258L,
- 1.8472382637239716844e6L,
- 9.6005154160492141090e6L,
- 5.0307677085023668786e7L,
- 2.6544418865271279673e8L,
- 1.4088623250287026866e9L,
- 7.5156879353737746270e9L,
- 4.0270783964955246149e10L,
- 2.1662089325801126339e11L,
- 1.1692489201929996116e12L,
- 6.3306543358985679881e12
- };
- return boost::math::tools::evaluate_polynomial(coef, m - 0.825L);
- }
- case 17:
- {
- constexpr T coef[] =
- {
- 2.4735961737513439120L,
- 3.7276242441180993105L,
- 15.607393035549304964L,
- 84.128508428058877470L,
- 506.98181970406139349L,
- 3252.2770581451236438L,
- 21713.242419574342564L,
- 149037.04518909327662L,
- 1.0439993310899908390e6L,
- 7.4279748170420389947e6L,
- 5.3503839675586611510e7L,
- 3.8924988699487084738e8L,
- 2.8552883511008106195e9L,
- 2.1090077038766840525e10L,
- 1.5669983394779020136e11L,
- 1.1702222424224398927e12L,
- 8.7779483236689379709e12L,
- 6.6101242752484950408e13L,
- 4.9948805371338879891e14L,
- 3.7859743397240299201e15L,
- 2.8775996123036112296e16L,
- 2.1926346839925760143e17L,
- 1.6744985438468349361e18L,
- 1.2814410112866546052e19L,
- 9.8249807041031260167e19
- };
- return boost::math::tools::evaluate_polynomial(coef, m - 0.875L);
- }
- default:
- //
- // All cases where m > 0.9
- // including all error handling:
- //
- return ellint_k_imp(k, pol, std::integral_constant<int, 2>());
- }
- }
- template <typename T, typename Policy>
- BOOST_MATH_FORCEINLINE typename tools::promote_args<T>::type ellint_1(T k, const Policy& pol, const std::true_type&)
- {
- typedef typename tools::promote_args<T>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- typedef std::integral_constant<int,
- #if defined(__clang_major__) && (__clang_major__ == 7)
- 2
- #else
- std::is_floating_point<T>::value && std::numeric_limits<T>::digits && (std::numeric_limits<T>::digits <= 54) ? 0 :
- std::is_floating_point<T>::value && std::numeric_limits<T>::digits && (std::numeric_limits<T>::digits <= 64) ? 1 : 2
- #endif
- > precision_tag_type;
- return policies::checked_narrowing_cast<result_type, Policy>(detail::ellint_k_imp(static_cast<value_type>(k), pol, precision_tag_type()), "boost::math::ellint_1<%1%>(%1%)");
- }
- template <class T1, class T2>
- BOOST_MATH_FORCEINLINE typename tools::promote_args<T1, T2>::type ellint_1(T1 k, T2 phi, const std::false_type&)
- {
- return boost::math::ellint_1(k, phi, policies::policy<>());
- }
- }
- // Complete elliptic integral (Legendre form) of the first kind
- template <typename T>
- BOOST_MATH_FORCEINLINE typename tools::promote_args<T>::type ellint_1(T k)
- {
- return ellint_1(k, policies::policy<>());
- }
- // Elliptic integral (Legendre form) of the first kind
- template <class T1, class T2, class Policy>
- BOOST_MATH_FORCEINLINE typename tools::promote_args<T1, T2>::type ellint_1(T1 k, T2 phi, const Policy& pol) // LCOV_EXCL_LINE gcc misses this but sees the function body, strange!
- {
- typedef typename tools::promote_args<T1, T2>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- return policies::checked_narrowing_cast<result_type, Policy>(detail::ellint_f_imp(static_cast<value_type>(phi), static_cast<value_type>(k), pol), "boost::math::ellint_1<%1%>(%1%,%1%)");
- }
- template <class T1, class T2>
- BOOST_MATH_FORCEINLINE typename tools::promote_args<T1, T2>::type ellint_1(T1 k, T2 phi)
- {
- typedef typename policies::is_policy<T2>::type tag_type;
- return detail::ellint_1(k, phi, tag_type());
- }
- }} // namespaces
- #endif // BOOST_MATH_ELLINT_1_HPP
|