123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536 |
- /*
- glh - is a platform-indepenedent C++ OpenGL helper library
- Copyright (c) 2000 Cass Everitt
- Copyright (c) 2000 NVIDIA Corporation
- All rights reserved.
- Redistribution and use in source and binary forms, with or
- without modification, are permitted provided that the following
- conditions are met:
- * Redistributions of source code must retain the above
- copyright notice, this list of conditions and the following
- disclaimer.
- * Redistributions in binary form must reproduce the above
- copyright notice, this list of conditions and the following
- disclaimer in the documentation and/or other materials
- provided with the distribution.
- * The names of contributors to this software may not be used
- to endorse or promote products derived from this software
- without specific prior written permission.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
- FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
- REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
- INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
- BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
- ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
- Cass Everitt - [email protected]
- */
- /*
- glh_linear.h
- */
- // Author: Cass W. Everitt
- #ifndef GLH_LINEAR_H
- #define GLH_LINEAR_H
- #include "llpreprocessor.h" // LL_INLINE
- #include "stdtypes.h" // F32 etc
- #include <memory.h>
- #include <math.h>
- #include <assert.h>
- // Only supports float for now...
- #define GLH_REAL_IS_FLOAT
- #ifdef GLH_REAL_IS_FLOAT
- # define GLH_REAL F32
- # define GLH_REAL_NAMESPACE ns_float
- #endif
- #define GLH_QUATERNION_NORMALIZATION_THRESHOLD 64
- #define GLH_RAD_TO_DEG GLH_REAL(57.2957795130823208767981548141052)
- #define GLH_DEG_TO_RAD GLH_REAL(0.0174532925199432957692369076848861)
- #define GLH_ZERO GLH_REAL(0.0)
- #define GLH_ONE GLH_REAL(1.0)
- #define GLH_TWO GLH_REAL(2.0)
- #define GLH_EPSILON GLH_REAL(10e-6)
- #define GLH_PI GLH_REAL(3.1415926535897932384626433832795)
- namespace glh
- {
- template <typename Ta, typename Tb>
- LL_INLINE bool equivalent(Ta a, Tb b)
- {
- return a < b + GLH_EPSILON && a > b - GLH_EPSILON;
- }
- LL_INLINE GLH_REAL to_degrees(GLH_REAL radians) { return radians * GLH_RAD_TO_DEG; }
- LL_INLINE GLH_REAL to_radians(GLH_REAL degrees) { return degrees * GLH_DEG_TO_RAD; }
- // forward declarations for friend template functions.
- template <int N, class T> class vec;
- // forward declarations for friend template functions.
- template <int N, class T>
- bool operator == (const vec<N,T> & v1, const vec<N,T> & v2);
- // forward declarations for friend template functions.
- template <int N, class T>
- bool operator != (const vec<N,T> & v1, const vec<N,T> & v2);
- template <int N, class T>
- class vec
- {
- public:
- int size() const { return N; }
- vec(const T & t = T())
- { for(int i = 0; i < N; i++) v[i] = t; }
- vec(const T * tp)
- { for(int i = 0; i < N; i++) v[i] = tp[i]; }
- const T * get_value() const
- { return v; }
- T dot(const vec<N,T> & rhs) const
- {
- T r = 0;
- for(int i = 0; i < N; i++) r += v[i]*rhs.v[i];
- return r;
- }
- T length() const
- {
- T r = 0;
- for(int i = 0; i < N; i++) r += v[i]*v[i];
- return T(sqrt(r));
- }
- T square_norm() const
- {
- T r = 0;
- for(int i = 0; i < N; i++) r += v[i]*v[i];
- return r;
- }
- void negate()
- { for(int i = 0; i < N; i++) v[i] = -v[i]; }
- T normalize()
- {
- T sum(0);
- for(int i = 0; i < N; i++)
- sum += v[i]*v[i];
- sum = T(sqrt(sum));
- if (sum > GLH_EPSILON)
- for(int i = 0; i < N; i++)
- v[i] /= sum;
- return sum;
- }
- vec<N,T> & set_value(const T * rhs)
- { for(int i = 0; i < N; i++) v[i] = rhs[i]; return *this; }
- T & operator [] (int i)
- { return v[i]; }
- const T & operator [] (int i) const
- { return v[i]; }
- vec<N,T> & operator *= (T d)
- { for(int i = 0; i < N; i++) v[i] *= d; return *this;}
- vec<N,T> & operator *= (const vec<N,T> & u)
- { for(int i = 0; i < N; i++) v[i] *= u[i]; return *this;}
- vec<N,T> & operator /= (T d)
- { if(d == 0) return *this; for(int i = 0; i < N; i++) v[i] /= d; return *this;}
- vec<N,T> & operator += (const vec<N,T> & u)
- { for(int i = 0; i < N; i++) v[i] += u.v[i]; return *this;}
- vec<N,T> & operator -= (const vec<N,T> & u)
- { for(int i = 0; i < N; i++) v[i] -= u.v[i]; return *this;}
- vec<N,T> operator - () const
- { vec<N,T> rv = v; rv.negate(); return rv; }
- vec<N,T> operator + (const vec<N,T> &v) const
- { vec<N,T> rt(*this); return rt += v; }
- vec<N,T> operator - (const vec<N,T> &v) const
- { vec<N,T> rt(*this); return rt -= v; }
- vec<N,T> operator * (T d) const
- { vec<N,T> rt(*this); return rt *= d; }
- friend bool operator == <> (const vec<N,T> &v1, const vec<N,T> &v2);
- friend bool operator != <> (const vec<N,T> &v1, const vec<N,T> &v2);
- //protected:
- T v[N];
- };
- // vector friend operators
- template <int N, class T> LL_INLINE
- vec<N,T> operator * (const vec<N,T> & b, T d)
- {
- vec<N,T> rt(b);
- return rt *= d;
- }
- template <int N, class T> LL_INLINE
- vec<N,T> operator * (T d, const vec<N,T> & b)
- { return b*d; }
- template <int N, class T> LL_INLINE
- vec<N,T> operator * (const vec<N,T> & b, const vec<N,T> & d)
- {
- vec<N,T> rt(b);
- return rt *= d;
- }
- template <int N, class T> LL_INLINE
- vec<N,T> operator / (const vec<N,T> & b, T d)
- { vec<N,T> rt(b); return rt /= d; }
- template <int N, class T> LL_INLINE
- vec<N,T> operator + (const vec<N,T> & v1, const vec<N,T> & v2)
- { vec<N,T> rt(v1); return rt += v2; }
- template <int N, class T> LL_INLINE
- vec<N,T> operator - (const vec<N,T> & v1, const vec<N,T> & v2)
- { vec<N,T> rt(v1); return rt -= v2; }
- template <int N, class T> LL_INLINE
- bool operator == (const vec<N,T> & v1, const vec<N,T> & v2)
- {
- for(int i = 0; i < N; i++)
- if(v1.v[i] != v2.v[i]) return false;
- return true;
- }
- template <int N, class T> LL_INLINE
- bool operator != (const vec<N,T> & v1, const vec<N,T> & v2)
- { return !(v1 == v2); }
- typedef vec<3,unsigned char> vec3ub;
- typedef vec<4,unsigned char> vec4ub;
- namespace GLH_REAL_NAMESPACE
- {
- typedef GLH_REAL real;
- class line;
- class plane;
- class matrix4;
- class quaternion;
- typedef quaternion rotation;
- class vec2 : public vec<2,real>
- {
- public:
- vec2(const real & t = real()) : vec<2,real>(t)
- {}
- vec2(const vec<2,real> & t) : vec<2,real>(t)
- {}
- vec2(const real * tp) : vec<2,real>(tp)
- {}
- vec2(real x, real y)
- { v[0] = x; v[1] = y; }
- void get_value(real & x, real & y) const
- { x = v[0]; y = v[1]; }
- vec2 & set_value(const real & x, const real & y)
- { v[0] = x; v[1] = y; return *this; }
- };
- class vec3 : public vec<3,real>
- {
- public:
- vec3(const real & t = real()) : vec<3,real>(t)
- {}
- vec3(const vec<3,real> & t) : vec<3,real>(t)
- {}
- vec3(const real * tp) : vec<3,real>(tp)
- {}
- vec3(real x, real y, real z)
- { v[0] = x; v[1] = y; v[2] = z; }
- void get_value(real & x, real & y, real & z) const
- { x = v[0]; y = v[1]; z = v[2]; }
- vec3 cross(const vec3 &rhs) const
- {
- vec3 rt;
- rt.v[0] = v[1]*rhs.v[2]-v[2]*rhs.v[1];
- rt.v[1] = v[2]*rhs.v[0]-v[0]*rhs.v[2];
- rt.v[2] = v[0]*rhs.v[1]-v[1]*rhs.v[0];
- return rt;
- }
- vec3 & set_value(const real & x, const real & y, const real & z)
- { v[0] = x; v[1] = y; v[2] = z; return *this; }
- };
- class vec4 : public vec<4,real>
- {
- public:
- vec4(const real & t = real()) : vec<4,real>(t)
- {}
- vec4(const vec<4,real> & t) : vec<4,real>(t)
- {}
- vec4(const vec<3,real> & t, real fourth)
- { v[0] = t.v[0]; v[1] = t.v[1]; v[2] = t.v[2]; v[3] = fourth; }
- vec4(const real * tp) : vec<4,real>(tp)
- {}
- vec4(real x, real y, real z, real w)
- { v[0] = x; v[1] = y; v[2] = z; v[3] = w; }
- void get_value(real & x, real & y, real & z, real & w) const
- { x = v[0]; y = v[1]; z = v[2]; w = v[3]; }
- vec4 & set_value(const real & x, const real & y, const real & z, const real & w)
- { v[0] = x; v[1] = y; v[2] = z; v[3] = w; return *this; }
- };
- LL_INLINE
- vec3 homogenize(const vec4 & v)
- {
- vec3 rt;
- assert(v.v[3] != GLH_ZERO);
- rt.v[0] = v.v[0]/v.v[3];
- rt.v[1] = v.v[1]/v.v[3];
- rt.v[2] = v.v[2]/v.v[3];
- return rt;
- }
- class line
- {
- public:
- line()
- { set_value(vec3(0,0,0),vec3(0,0,1)); }
- line(const vec3 & p0, const vec3 &p1)
- { set_value(p0,p1); }
- void set_value(const vec3 &p0, const vec3 &p1)
- {
- position = p0;
- direction = p1-p0;
- direction.normalize();
- }
- bool get_closest_points(const line &line2,
- vec3 &pointOnThis,
- vec3 &pointOnThat)
- {
- // quick check to see if parallel -- if so, quit.
- if(fabs(direction.dot(line2.direction)) == 1.0)
- return 0;
- line l2 = line2;
- // Algorithm: Brian Jean
- //
- real u;
- real v;
- vec3 Vr = direction;
- vec3 Vs = l2.direction;
- real Vr_Dot_Vs = Vr.dot(Vs);
- real detA = real(1.0 - (Vr_Dot_Vs * Vr_Dot_Vs));
- vec3 C = l2.position - position;
- real C_Dot_Vr = C.dot(Vr);
- real C_Dot_Vs = C.dot(Vs);
- u = (C_Dot_Vr - Vr_Dot_Vs * C_Dot_Vs)/detA;
- v = (C_Dot_Vr * Vr_Dot_Vs - C_Dot_Vs)/detA;
- pointOnThis = position;
- pointOnThis += direction * u;
- pointOnThat = l2.position;
- pointOnThat += l2.direction * v;
- return 1;
- }
- vec3 get_closest_point(const vec3 &point)
- {
- vec3 np = point - position;
- vec3 rp = direction*direction.dot(np)+position;
- return rp;
- }
- const vec3 & get_position() const {return position;}
- const vec3 & get_direction() const {return direction;}
- //protected:
- vec3 position;
- vec3 direction;
- };
- // matrix
- class matrix4
- {
- public:
- matrix4() { make_identity(); }
- matrix4(real r)
- { set_value(r); }
- matrix4(real * m)
- { set_value(m); }
- matrix4(real a00, real a01, real a02, real a03,
- real a10, real a11, real a12, real a13,
- real a20, real a21, real a22, real a23,
- real a30, real a31, real a32, real a33)
- {
- element(0,0) = a00;
- element(0,1) = a01;
- element(0,2) = a02;
- element(0,3) = a03;
- element(1,0) = a10;
- element(1,1) = a11;
- element(1,2) = a12;
- element(1,3) = a13;
- element(2,0) = a20;
- element(2,1) = a21;
- element(2,2) = a22;
- element(2,3) = a23;
- element(3,0) = a30;
- element(3,1) = a31;
- element(3,2) = a32;
- element(3,3) = a33;
- }
- void get_value(real * mp) const
- {
- int c = 0;
- for(int j=0; j < 4; j++)
- for(int i=0; i < 4; i++)
- mp[c++] = element(i,j);
- }
- const real * get_value() const
- { return m; }
- void set_value(real * mp)
- {
- int c = 0;
- for(int j=0; j < 4; j++)
- for(int i=0; i < 4; i++)
- element(i,j) = mp[c++];
- }
- void set_value(real r)
- {
- for(int i=0; i < 4; i++)
- for(int j=0; j < 4; j++)
- element(i,j) = r;
- }
- void make_identity()
- {
- element(0,0) = 1.0;
- element(0,1) = 0.0;
- element(0,2) = 0.0;
- element(0,3) = 0.0;
- element(1,0) = 0.0;
- element(1,1) = 1.0;
- element(1,2) = 0.0;
- element(1,3) = 0.0;
- element(2,0) = 0.0;
- element(2,1) = 0.0;
- element(2,2) = 1.0;
- element(2,3) = 0.0;
- element(3,0) = 0.0;
- element(3,1) = 0.0;
- element(3,2) = 0.0;
- element(3,3) = 1.0;
- }
- static matrix4 identity()
- {
- static matrix4 mident (
- 1.0, 0.0, 0.0, 0.0,
- 0.0, 1.0, 0.0, 0.0,
- 0.0, 0.0, 1.0, 0.0,
- 0.0, 0.0, 0.0, 1.0 );
- return mident;
- }
- void set_scale(real s)
- {
- element(0,0) = s;
- element(1,1) = s;
- element(2,2) = s;
- }
- void set_scale(const vec3 & s)
- {
- element(0,0) = s.v[0];
- element(1,1) = s.v[1];
- element(2,2) = s.v[2];
- }
- void set_translate(const vec3 & t)
- {
- element(0,3) = t.v[0];
- element(1,3) = t.v[1];
- element(2,3) = t.v[2];
- }
- void set_row(int r, const vec4 & t)
- {
- element(r,0) = t.v[0];
- element(r,1) = t.v[1];
- element(r,2) = t.v[2];
- element(r,3) = t.v[3];
- }
- void set_column(int c, const vec4 & t)
- {
- element(0,c) = t.v[0];
- element(1,c) = t.v[1];
- element(2,c) = t.v[2];
- element(3,c) = t.v[3];
- }
- void get_row(int r, vec4 & t) const
- {
- t.v[0] = element(r,0);
- t.v[1] = element(r,1);
- t.v[2] = element(r,2);
- t.v[3] = element(r,3);
- }
- vec4 get_row(int r) const
- {
- vec4 v; get_row(r, v);
- return v;
- }
- void get_column(int c, vec4 & t) const
- {
- t.v[0] = element(0,c);
- t.v[1] = element(1,c);
- t.v[2] = element(2,c);
- t.v[3] = element(3,c);
- }
- vec4 get_column(int c) const
- {
- vec4 v; get_column(c, v);
- return v;
- }
- matrix4 inverse() const
- {
- matrix4 minv;
- real r1[8], r2[8], r3[8], r4[8];
- real *s[4], *tmprow;
- s[0] = &r1[0];
- s[1] = &r2[0];
- s[2] = &r3[0];
- s[3] = &r4[0];
- int i,j,p,jj;
- for(i=0;i<4;i++)
- {
- for(j=0;j<4;j++)
- {
- s[i][j] = element(i,j);
- if(i==j) s[i][j+4] = 1.0;
- else s[i][j+4] = 0.0;
- }
- }
- real scp[4];
- for(i=0;i<4;i++)
- {
- scp[i] = real(fabs(s[i][0]));
- for(j=1;j<4;j++)
- {
- if(real(fabs(s[i][j])) > scp[i]) scp[i] = real(fabs(s[i][j]));
- }
- if(scp[i] == 0.0) return minv; // singular matrix!
- }
- int pivot_to;
- real scp_max;
- for(i=0;i<4;i++)
- {
- // select pivot row
- pivot_to = i;
- scp_max = real(fabs(s[i][i]/scp[i]));
- // find out which row should be on top
- for(p=i+1;p<4;p++)
- {
- if(real(fabs(s[p][i]/scp[p])) > scp_max)
- {
- scp_max = real(fabs(s[p][i]/scp[p])); pivot_to = p;
- }
- }
- // Pivot if necessary
- if(pivot_to != i)
- {
- tmprow = s[i];
- s[i] = s[pivot_to];
- s[pivot_to] = tmprow;
- real tmpscp;
- tmpscp = scp[i];
- scp[i] = scp[pivot_to];
- scp[pivot_to] = tmpscp;
- }
- real mji;
- // perform gaussian elimination
- for(j=i+1;j<4;j++)
- {
- mji = s[j][i]/s[i][i];
- s[j][i] = 0.0;
- for(jj=i+1;jj<8;jj++)
- {
- s[j][jj] -= mji*s[i][jj];
- }
- }
- }
- if(s[3][3] == 0.0) return minv; // singular matrix!
- //
- // Now we have an upper triangular matrix.
- //
- // x x x x | y y y y
- // 0 x x x | y y y y
- // 0 0 x x | y y y y
- // 0 0 0 x | y y y y
- //
- // we'll back substitute to get the inverse
- //
- // 1 0 0 0 | z z z z
- // 0 1 0 0 | z z z z
- // 0 0 1 0 | z z z z
- // 0 0 0 1 | z z z z
- //
- real mij;
- for(i=3;i>0;i--)
- {
- for(j=i-1;j > -1; j--)
- {
- mij = s[j][i]/s[i][i];
- for(jj=j+1;jj<8;jj++)
- s[j][jj] -= mij*s[i][jj];
- }
- }
- for(i=0;i<4;i++)
- {
- for(j=0;j<4;j++)
- {
- minv(i,j) = s[i][j+4] / s[i][i];
- }
- }
- return minv;
- }
- matrix4 transpose() const
- {
- matrix4 mtrans;
- for(int i=0;i<4;i++)
- for(int j=0;j<4;j++)
- mtrans(i,j) = element(j,i);
- return mtrans;
- }
- matrix4 & mult_right(const matrix4 & b)
- {
- matrix4 mt(*this);
- set_value(real(0));
- for(int i=0; i < 4; i++)
- for(int j=0; j < 4; j++)
- for(int c=0; c < 4; c++)
- element(i,j) += mt(i,c) * b(c,j);
- return *this;
- }
- matrix4 & mult_left(const matrix4 & b)
- {
- matrix4 mt(*this);
- set_value(real(0));
- for(int i=0; i < 4; i++)
- for(int j=0; j < 4; j++)
- for(int c=0; c < 4; c++)
- element(i,j) += b(i,c) * mt(c,j);
- return *this;
- }
- // dst = M * src
- void mult_matrix_vec(const vec3 &src, vec3 &dst) const
- {
- real w = (
- src.v[0] * element(3,0) +
- src.v[1] * element(3,1) +
- src.v[2] * element(3,2) +
- element(3,3) );
- assert(w != GLH_ZERO);
- dst.v[0] = (
- src.v[0] * element(0,0) +
- src.v[1] * element(0,1) +
- src.v[2] * element(0,2) +
- element(0,3) ) / w;
- dst.v[1] = (
- src.v[0] * element(1,0) +
- src.v[1] * element(1,1) +
- src.v[2] * element(1,2) +
- element(1,3) ) / w;
- dst.v[2] = (
- src.v[0] * element(2,0) +
- src.v[1] * element(2,1) +
- src.v[2] * element(2,2) +
- element(2,3) ) / w;
- }
- void mult_matrix_vec(vec3 & src_and_dst) const
- { mult_matrix_vec(vec3(src_and_dst), src_and_dst); }
- // dst = src * M
- void mult_vec_matrix(const vec3 &src, vec3 &dst) const
- {
- real w = (
- src.v[0] * element(0,3) +
- src.v[1] * element(1,3) +
- src.v[2] * element(2,3) +
- element(3,3) );
- assert(w != GLH_ZERO);
- dst.v[0] = (
- src.v[0] * element(0,0) +
- src.v[1] * element(1,0) +
- src.v[2] * element(2,0) +
- element(3,0) ) / w;
- dst.v[1] = (
- src.v[0] * element(0,1) +
- src.v[1] * element(1,1) +
- src.v[2] * element(2,1) +
- element(3,1) ) / w;
- dst.v[2] = (
- src.v[0] * element(0,2) +
- src.v[1] * element(1,2) +
- src.v[2] * element(2,2) +
- element(3,2) ) / w;
- }
- void mult_vec_matrix(vec3 & src_and_dst) const
- { mult_vec_matrix(vec3(src_and_dst), src_and_dst); }
- // dst = M * src
- void mult_matrix_vec(const vec4 &src, vec4 &dst) const
- {
- dst.v[0] = (
- src.v[0] * element(0,0) +
- src.v[1] * element(0,1) +
- src.v[2] * element(0,2) +
- src.v[3] * element(0,3));
- dst.v[1] = (
- src.v[0] * element(1,0) +
- src.v[1] * element(1,1) +
- src.v[2] * element(1,2) +
- src.v[3] * element(1,3));
- dst.v[2] = (
- src.v[0] * element(2,0) +
- src.v[1] * element(2,1) +
- src.v[2] * element(2,2) +
- src.v[3] * element(2,3));
- dst.v[3] = (
- src.v[0] * element(3,0) +
- src.v[1] * element(3,1) +
- src.v[2] * element(3,2) +
- src.v[3] * element(3,3));
- }
- void mult_matrix_vec(vec4 & src_and_dst) const
- { mult_matrix_vec(vec4(src_and_dst), src_and_dst); }
- // dst = src * M
- void mult_vec_matrix(const vec4 &src, vec4 &dst) const
- {
- dst.v[0] = (
- src.v[0] * element(0,0) +
- src.v[1] * element(1,0) +
- src.v[2] * element(2,0) +
- src.v[3] * element(3,0));
- dst.v[1] = (
- src.v[0] * element(0,1) +
- src.v[1] * element(1,1) +
- src.v[2] * element(2,1) +
- src.v[3] * element(3,1));
- dst.v[2] = (
- src.v[0] * element(0,2) +
- src.v[1] * element(1,2) +
- src.v[2] * element(2,2) +
- src.v[3] * element(3,2));
- dst.v[3] = (
- src.v[0] * element(0,3) +
- src.v[1] * element(1,3) +
- src.v[2] * element(2,3) +
- src.v[3] * element(3,3));
- }
- void mult_vec_matrix(vec4 & src_and_dst) const
- { mult_vec_matrix(vec4(src_and_dst), src_and_dst); }
- // dst = M * src
- void mult_matrix_dir(const vec3 &src, vec3 &dst) const
- {
- dst.v[0] = (
- src.v[0] * element(0,0) +
- src.v[1] * element(0,1) +
- src.v[2] * element(0,2)) ;
- dst.v[1] = (
- src.v[0] * element(1,0) +
- src.v[1] * element(1,1) +
- src.v[2] * element(1,2)) ;
- dst.v[2] = (
- src.v[0] * element(2,0) +
- src.v[1] * element(2,1) +
- src.v[2] * element(2,2)) ;
- }
- void mult_matrix_dir(vec3 & src_and_dst) const
- { mult_matrix_dir(vec3(src_and_dst), src_and_dst); }
- // dst = src * M
- void mult_dir_matrix(const vec3 &src, vec3 &dst) const
- {
- dst.v[0] = (
- src.v[0] * element(0,0) +
- src.v[1] * element(1,0) +
- src.v[2] * element(2,0)) ;
- dst.v[1] = (
- src.v[0] * element(0,1) +
- src.v[1] * element(1,1) +
- src.v[2] * element(2,1)) ;
- dst.v[2] = (
- src.v[0] * element(0,2) +
- src.v[1] * element(1,2) +
- src.v[2] * element(2,2)) ;
- }
- void mult_dir_matrix(vec3 & src_and_dst) const
- { mult_dir_matrix(vec3(src_and_dst), src_and_dst); }
- real & operator () (int row, int col)
- { return element(row,col); }
- const real & operator () (int row, int col) const
- { return element(row,col); }
- real & element (int row, int col)
- { return m[row | (col<<2)]; }
- const real & element (int row, int col) const
- { return m[row | (col<<2)]; }
- matrix4 & operator *= (const matrix4 & mat)
- {
- mult_right(mat);
- return *this;
- }
- matrix4 & operator *= (const real & r)
- {
- for (int i = 0; i < 4; ++i)
- {
- element(0,i) *= r;
- element(1,i) *= r;
- element(2,i) *= r;
- element(3,i) *= r;
- }
- return *this;
- }
- matrix4 & operator += (const matrix4 & mat)
- {
- for (int i = 0; i < 4; ++i)
- {
- element(0,i) += mat.element(0,i);
- element(1,i) += mat.element(1,i);
- element(2,i) += mat.element(2,i);
- element(3,i) += mat.element(3,i);
- }
- return *this;
- }
- friend matrix4 operator * (const matrix4 & m1, const matrix4 & m2);
- friend bool operator == (const matrix4 & m1, const matrix4 & m2);
- friend bool operator != (const matrix4 & m1, const matrix4 & m2);
- //protected:
- real m[16];
- };
- LL_INLINE
- matrix4 operator * (const matrix4 & m1, const matrix4 & m2)
- {
- matrix4 product;
- product = m1;
- product.mult_right(m2);
- return product;
- }
- LL_INLINE
- bool operator ==(const matrix4 &m1, const matrix4 &m2)
- {
- return (
- m1(0,0) == m2(0,0) &&
- m1(0,1) == m2(0,1) &&
- m1(0,2) == m2(0,2) &&
- m1(0,3) == m2(0,3) &&
- m1(1,0) == m2(1,0) &&
- m1(1,1) == m2(1,1) &&
- m1(1,2) == m2(1,2) &&
- m1(1,3) == m2(1,3) &&
- m1(2,0) == m2(2,0) &&
- m1(2,1) == m2(2,1) &&
- m1(2,2) == m2(2,2) &&
- m1(2,3) == m2(2,3) &&
- m1(3,0) == m2(3,0) &&
- m1(3,1) == m2(3,1) &&
- m1(3,2) == m2(3,2) &&
- m1(3,3) == m2(3,3));
- }
- LL_INLINE
- bool operator != (const matrix4 & m1, const matrix4 & m2)
- { return !(m1 == m2); }
- class quaternion
- {
- public:
- quaternion()
- {
- *this = identity();
- }
- quaternion(const real v[4])
- {
- set_value(v);
- }
- quaternion(real q0, real q1, real q2, real q3)
- {
- set_value(q0, q1, q2, q3);
- }
- quaternion(const matrix4 & m)
- {
- set_value(m);
- }
- quaternion(const vec3 &axis, real radians)
- {
- set_value(axis, radians);
- }
- quaternion(const vec3 &rotateFrom, const vec3 &rotateTo)
- {
- set_value(rotateFrom, rotateTo);
- }
- quaternion(const vec3 & from_look, const vec3 & from_up,
- const vec3 & to_look, const vec3& to_up)
- {
- set_value(from_look, from_up, to_look, to_up);
- }
- const real * get_value() const
- {
- return &q[0];
- }
- void get_value(real &q0, real &q1, real &q2, real &q3) const
- {
- q0 = q[0];
- q1 = q[1];
- q2 = q[2];
- q3 = q[3];
- }
- quaternion & set_value(real q0, real q1, real q2, real q3)
- {
- q[0] = q0;
- q[1] = q1;
- q[2] = q2;
- q[3] = q3;
- counter = 0;
- return *this;
- }
- void get_value(vec3 &axis, real &radians) const
- {
- radians = real(acos(q[3]) * GLH_TWO);
- if (radians == GLH_ZERO)
- axis = vec3(0.0, 0.0, 1.0);
- else
- {
- axis.v[0] = q[0];
- axis.v[1] = q[1];
- axis.v[2] = q[2];
- axis.normalize();
- }
- }
- void get_value(matrix4 & m) const
- {
- real s, xs, ys, zs, wx, wy, wz, xx, xy, xz, yy, yz, zz;
- real norm = q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3];
- s = (equivalent(norm,GLH_ZERO)) ? GLH_ZERO : (GLH_TWO / norm);
- xs = q[0] * s;
- ys = q[1] * s;
- zs = q[2] * s;
- wx = q[3] * xs;
- wy = q[3] * ys;
- wz = q[3] * zs;
- xx = q[0] * xs;
- xy = q[0] * ys;
- xz = q[0] * zs;
- yy = q[1] * ys;
- yz = q[1] * zs;
- zz = q[2] * zs;
- m(0,0) = real(GLH_ONE - (yy + zz));
- m(1,0) = real (xy + wz);
- m(2,0) = real (xz - wy);
- m(0,1) = real (xy - wz);
- m(1,1) = real (GLH_ONE - (xx + zz));
- m(2,1) = real (yz + wx);
- m(0,2) = real (xz + wy);
- m(1,2) = real (yz - wx);
- m(2,2) = real (GLH_ONE - (xx + yy));
- m(3,0) = m(3,1) = m(3,2) = m(0,3) = m(1,3) = m(2,3) = GLH_ZERO;
- m(3,3) = GLH_ONE;
- }
- quaternion & set_value(const real * qp)
- {
- memcpy(q,qp,sizeof(real) * 4);
- counter = 0;
- return *this;
- }
- quaternion & set_value(const matrix4 & m)
- {
- real tr, s;
- int i, j, k;
- const int nxt[3] = { 1, 2, 0 };
- tr = m(0,0) + m(1,1) + m(2,2);
- if (tr > GLH_ZERO)
- {
- s = real(sqrt(tr + m(3,3)));
- q[3] = real (s * 0.5);
- s = real(0.5) / s;
- q[0] = real ((m(1,2) - m(2,1)) * s);
- q[1] = real ((m(2,0) - m(0,2)) * s);
- q[2] = real ((m(0,1) - m(1,0)) * s);
- }
- else
- {
- i = 0;
- if (m(1,1) > m(0,0))
- i = 1;
- if (m(2,2) > m(i,i))
- i = 2;
- j = nxt[i];
- k = nxt[j];
- s = real(sqrt((m(i,j) - (m(j,j) + m(k,k))) + GLH_ONE));
- q[i] = real (s * 0.5);
- s = real(0.5 / s);
- q[3] = real ((m(j,k) - m(k,j)) * s);
- q[j] = real ((m(i,j) + m(j,i)) * s);
- q[k] = real ((m(i,k) + m(k,i)) * s);
- }
- counter = 0;
- return *this;
- }
- quaternion & set_value(const vec3 &axis, real theta)
- {
- real sqnorm = axis.square_norm();
- if (sqnorm <= GLH_EPSILON)
- {
- // axis too small.
- x = y = z = 0.0;
- w = 1.0;
- }
- else
- {
- theta *= real(0.5);
- real sin_theta = real(sin(theta));
- if (!equivalent(sqnorm,GLH_ONE))
- sin_theta /= real(sqrt(sqnorm));
- x = sin_theta * axis.v[0];
- y = sin_theta * axis.v[1];
- z = sin_theta * axis.v[2];
- w = real(cos(theta));
- }
- return *this;
- }
- quaternion & set_value(const vec3 & rotateFrom, const vec3 & rotateTo)
- {
- vec3 p1, p2;
- real alpha;
- p1 = rotateFrom;
- p1.normalize();
- p2 = rotateTo;
- p2.normalize();
- alpha = p1.dot(p2);
- if(equivalent(alpha,GLH_ONE))
- {
- *this = identity();
- return *this;
- }
- // ensures that the anti-parallel case leads to a positive dot
- if(equivalent(alpha,-GLH_ONE))
- {
- vec3 v;
- if(p1.v[0] != p1.v[1] || p1.v[0] != p1.v[2])
- v = vec3(p1.v[1], p1.v[2], p1.v[0]);
- else
- v = vec3(-p1.v[0], p1.v[1], p1.v[2]);
- v -= p1 * p1.dot(v);
- v.normalize();
- set_value(v, GLH_PI);
- return *this;
- }
- p1 = p1.cross(p2);
- p1.normalize();
- set_value(p1,real(acos(alpha)));
- counter = 0;
- return *this;
- }
- quaternion & set_value(const vec3 & from_look, const vec3 & from_up,
- const vec3 & to_look, const vec3 & to_up)
- {
- quaternion r_look = quaternion(from_look, to_look);
- vec3 rotated_from_up(from_up);
- r_look.mult_vec(rotated_from_up);
- quaternion r_twist = quaternion(rotated_from_up, to_up);
- *this = r_twist;
- *this *= r_look;
- return *this;
- }
- quaternion & operator *= (const quaternion & qr)
- {
- quaternion ql(*this);
- w = ql.w * qr.w - ql.x * qr.x - ql.y * qr.y - ql.z * qr.z;
- x = ql.w * qr.x + ql.x * qr.w + ql.y * qr.z - ql.z * qr.y;
- y = ql.w * qr.y + ql.y * qr.w + ql.z * qr.x - ql.x * qr.z;
- z = ql.w * qr.z + ql.z * qr.w + ql.x * qr.y - ql.y * qr.x;
- counter += qr.counter;
- counter++;
- counter_normalize();
- return *this;
- }
- void normalize()
- {
- real rnorm = GLH_ONE / real(sqrt(w * w + x * x + y * y + z * z));
- if (equivalent(rnorm, GLH_ZERO))
- return;
- x *= rnorm;
- y *= rnorm;
- z *= rnorm;
- w *= rnorm;
- counter = 0;
- }
- friend bool operator == (const quaternion & q1, const quaternion & q2);
- friend bool operator != (const quaternion & q1, const quaternion & q2);
- friend quaternion operator * (const quaternion & q1, const quaternion & q2);
- bool equals(const quaternion & r, real tolerance) const
- {
- real t;
- t = (
- (q[0]-r.q[0])*(q[0]-r.q[0]) +
- (q[1]-r.q[1])*(q[1]-r.q[1]) +
- (q[2]-r.q[2])*(q[2]-r.q[2]) +
- (q[3]-r.q[3])*(q[3]-r.q[3]));
- if(t > GLH_EPSILON)
- return false;
- return 1;
- }
- quaternion & conjugate()
- {
- q[0] *= -GLH_ONE;
- q[1] *= -GLH_ONE;
- q[2] *= -GLH_ONE;
- return *this;
- }
- quaternion & invert()
- {
- return conjugate();
- }
- quaternion inverse() const
- {
- quaternion r = *this;
- return r.invert();
- }
- //
- // Quaternion multiplication with cartesian vector
- // v' = q*v*q(star)
- //
- void mult_vec(const vec3 &src, vec3 &dst) const
- {
- real v_coef = w * w - x * x - y * y - z * z;
- real u_coef = GLH_TWO * (src.v[0] * x + src.v[1] * y + src.v[2] * z);
- real c_coef = GLH_TWO * w;
- dst.v[0] = v_coef * src.v[0] + u_coef * x + c_coef * (y * src.v[2] - z * src.v[1]);
- dst.v[1] = v_coef * src.v[1] + u_coef * y + c_coef * (z * src.v[0] - x * src.v[2]);
- dst.v[2] = v_coef * src.v[2] + u_coef * z + c_coef * (x * src.v[1] - y * src.v[0]);
- }
- void mult_vec(vec3 & src_and_dst) const
- {
- mult_vec(vec3(src_and_dst), src_and_dst);
- }
- void scale_angle(real scaleFactor)
- {
- vec3 axis;
- real radians;
- get_value(axis, radians);
- radians *= scaleFactor;
- set_value(axis, radians);
- }
- static quaternion slerp(const quaternion & p, const quaternion & q, real alpha)
- {
- quaternion r;
- real cos_omega = p.x * q.x + p.y * q.y + p.z * q.z + p.w * q.w;
- // if B is on opposite hemisphere from A, use -B instead
- int bflip;
- if ((bflip = (cos_omega < GLH_ZERO)))
- cos_omega = -cos_omega;
- // complementary interpolation parameter
- real beta = GLH_ONE - alpha;
- if(cos_omega <= GLH_ONE - GLH_EPSILON)
- return p;
- real omega = real(acos(cos_omega));
- real one_over_sin_omega = GLH_ONE / real(sin(omega));
- beta = real(sin(omega*beta) * one_over_sin_omega);
- alpha = real(sin(omega*alpha) * one_over_sin_omega);
- if (bflip)
- alpha = -alpha;
- r.x = beta * p.q[0]+ alpha * q.q[0];
- r.y = beta * p.q[1]+ alpha * q.q[1];
- r.z = beta * p.q[2]+ alpha * q.q[2];
- r.w = beta * p.q[3]+ alpha * q.q[3];
- return r;
- }
- static quaternion identity()
- {
- static quaternion ident(vec3(0.0, 0.0, 0.0), GLH_ONE);
- return ident;
- }
- real & operator [](int i)
- {
- assert(i < 4);
- return q[i];
- }
- const real & operator [](int i) const
- {
- assert(i < 4);
- return q[i];
- }
- protected:
- void counter_normalize()
- {
- if (counter > GLH_QUATERNION_NORMALIZATION_THRESHOLD)
- normalize();
- }
- union
- {
- struct
- {
- real q[4];
- };
- struct
- {
- real x;
- real y;
- real z;
- real w;
- };
- };
- // renormalization counter
- unsigned char counter;
- };
- LL_INLINE
- bool operator == (const quaternion & q1, const quaternion & q2)
- {
- return (equivalent(q1.x, q2.x) &&
- equivalent(q1.y, q2.y) &&
- equivalent(q1.z, q2.z) &&
- equivalent(q1.w, q2.w));
- }
- LL_INLINE
- bool operator != (const quaternion & q1, const quaternion & q2)
- {
- return ! (q1 == q2);
- }
- LL_INLINE
- quaternion operator * (const quaternion & q1, const quaternion & q2)
- {
- quaternion r(q1);
- r *= q2;
- return r;
- }
- class plane
- {
- public:
- plane()
- {
- planedistance = 0.0;
- planenormal.set_value(0.0, 0.0, 1.0);
- }
- plane(const vec3 &p0, const vec3 &p1, const vec3 &p2)
- {
- vec3 v0 = p1 - p0;
- vec3 v1 = p2 - p0;
- planenormal = v0.cross(v1);
- planenormal.normalize();
- planedistance = p0.dot(planenormal);
- }
- plane(const vec3 &normal, real distance)
- {
- planedistance = distance;
- planenormal = normal;
- planenormal.normalize();
- }
- plane(const vec3 &normal, const vec3 &point)
- {
- planenormal = normal;
- planenormal.normalize();
- planedistance = point.dot(planenormal);
- }
- void offset(real d)
- {
- planedistance += d;
- }
- bool intersect(const line &l, vec3 &intersection) const
- {
- vec3 pos, dir;
- vec3 pn = planenormal;
- real pd = planedistance;
- pos = l.get_position();
- dir = l.get_direction();
- if(dir.dot(pn) == 0.0) return 0;
- pos -= pn*pd;
- // now we're talking about a plane passing through the origin
- if(pos.dot(pn) < 0.0) pn.negate();
- if(dir.dot(pn) > 0.0) dir.negate();
- vec3 ppos = pn * pos.dot(pn);
- pos = (ppos.length()/dir.dot(-pn))*dir;
- intersection = l.get_position();
- intersection += pos;
- return 1;
- }
- void transform(const matrix4 &matrix)
- {
- matrix4 invtr = matrix.inverse();
- invtr = invtr.transpose();
- vec3 pntOnplane = planenormal * planedistance;
- vec3 newPntOnplane;
- vec3 newnormal;
- invtr.mult_dir_matrix(planenormal, newnormal);
- matrix.mult_vec_matrix(pntOnplane, newPntOnplane);
- newnormal.normalize();
- planenormal = newnormal;
- planedistance = newPntOnplane.dot(planenormal);
- }
- bool is_in_half_space(const vec3 &point) const
- {
- if((point.dot(planenormal) - planedistance) < 0.0)
- return 0;
- return 1;
- }
- real distance(const vec3 & point) const
- {
- return planenormal.dot(point - planenormal*planedistance);
- }
- const vec3 &get_normal() const
- {
- return planenormal;
- }
- real get_distance_from_origin() const
- {
- return planedistance;
- }
- friend bool operator == (const plane & p1, const plane & p2);
- friend bool operator != (const plane & p1, const plane & p2);
- //protected:
- vec3 planenormal;
- real planedistance;
- };
- LL_INLINE
- bool operator == (const plane & p1, const plane & p2)
- {
- return ( p1.planedistance == p2.planedistance && p1.planenormal == p2.planenormal);
- }
- LL_INLINE
- bool operator != (const plane & p1, const plane & p2)
- { return ! (p1 == p2); }
- } // "ns_##GLH_REAL"
- // make common typedefs...
- #ifdef GLH_REAL_IS_FLOAT
- typedef GLH_REAL_NAMESPACE::vec2 vec2f;
- typedef GLH_REAL_NAMESPACE::vec3 vec3f;
- typedef GLH_REAL_NAMESPACE::vec4 vec4f;
- typedef GLH_REAL_NAMESPACE::quaternion quaternionf;
- typedef GLH_REAL_NAMESPACE::quaternion rotationf;
- typedef GLH_REAL_NAMESPACE::line linef;
- typedef GLH_REAL_NAMESPACE::plane planef;
- typedef GLH_REAL_NAMESPACE::matrix4 matrix4f;
- #endif
- } // namespace glh
- #endif
|