123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360 |
- /* boost random/nierderreiter_base2.hpp header file
- *
- * Copyright Justinas Vygintas Daugmaudis 2010-2018
- * Distributed under the Boost Software License, Version 1.0. (See
- * accompanying file LICENSE_1_0.txt or copy at
- * http://www.boost.org/LICENSE_1_0.txt)
- */
- #ifndef BOOST_RANDOM_NIEDERREITER_BASE2_HPP
- #define BOOST_RANDOM_NIEDERREITER_BASE2_HPP
- #include <boost/random/detail/niederreiter_base2_table.hpp>
- #include <boost/random/detail/gray_coded_qrng.hpp>
- #include <boost/dynamic_bitset.hpp>
- namespace boost {
- namespace random {
- /** @cond */
- namespace qrng_detail {
- namespace nb2 {
- // Return the base 2 logarithm for a given bitset v
- template <typename DynamicBitset>
- inline typename DynamicBitset::size_type
- bitset_log2(const DynamicBitset& v)
- {
- if (v.none())
- boost::throw_exception( std::invalid_argument("bitset_log2") );
- typename DynamicBitset::size_type hibit = v.size() - 1;
- while (!v.test(hibit))
- --hibit;
- return hibit;
- }
- // Multiply polynomials over Z_2.
- template <typename PolynomialT, typename DynamicBitset>
- inline void modulo2_multiply(PolynomialT P, DynamicBitset& v, DynamicBitset& pt)
- {
- pt.reset(); // pt == 0
- for (; P; P >>= 1, v <<= 1)
- if (P & 1) pt ^= v;
- pt.swap(v);
- }
- // Calculate the values of the constants V(J,R) as
- // described in BFN section 3.3.
- //
- // pb = polynomial defined in section 2.3 of BFN.
- template <typename DynamicBitset>
- inline void calculate_v(const DynamicBitset& pb,
- typename DynamicBitset::size_type kj,
- typename DynamicBitset::size_type pb_degree,
- DynamicBitset& v)
- {
- typedef typename DynamicBitset::size_type size_type;
- // Now choose values of V in accordance with
- // the conditions in section 3.3.
- size_type r = 0;
- for ( ; r != kj; ++r)
- v.reset(r);
- // Quoting from BFN: "Our program currently sets each K_q
- // equal to eq. This has the effect of setting all unrestricted
- // values of v to 1."
- for ( ; r < pb_degree; ++r)
- v.set(r);
- // Calculate the remaining V's using the recursion of section 2.3,
- // remembering that the B's have the opposite sign.
- for ( ; r != v.size(); ++r)
- {
- bool term = false;
- for (typename DynamicBitset::size_type k = 0; k < pb_degree; ++k)
- {
- term ^= pb.test(k) & v[r + k - pb_degree];
- }
- v[r] = term;
- }
- }
- } // namespace nb2
- template<typename UIntType, unsigned w, typename Nb2Table>
- struct niederreiter_base2_lattice
- {
- typedef UIntType value_type;
- BOOST_STATIC_ASSERT(w > 0u);
- BOOST_STATIC_CONSTANT(unsigned, bit_count = w);
- private:
- typedef std::vector<value_type> container_type;
- public:
- explicit niederreiter_base2_lattice(std::size_t dimension)
- {
- resize(dimension);
- }
- void resize(std::size_t dimension)
- {
- typedef boost::dynamic_bitset<> bitset_type;
- dimension_assert("Niederreiter base 2", dimension, Nb2Table::max_dimension);
- // Initialize the bit array
- container_type cj(bit_count * dimension);
- // Reserve temporary space for lattice computation
- bitset_type v, pb, tmp;
- // Compute Niedderreiter base 2 lattice
- for (std::size_t dim = 0; dim != dimension; ++dim)
- {
- const typename Nb2Table::value_type poly = Nb2Table::polynomial(dim);
- if (poly > (std::numeric_limits<value_type>::max)()) {
- boost::throw_exception( std::range_error("niederreiter_base2: polynomial value outside the given value type range") );
- }
- const unsigned degree = qrng_detail::msb(poly); // integer log2(poly)
- const unsigned space_required = degree * ((bit_count / degree) + 1); // ~ degree + bit_count
- v.resize(degree + bit_count - 1);
- // For each dimension, we need to calculate powers of an
- // appropriate irreducible polynomial, see Niederreiter
- // page 65, just below equation (19).
- // Copy the appropriate irreducible polynomial into PX,
- // and its degree into E. Set polynomial B = PX ** 0 = 1.
- // M is the degree of B. Subsequently B will hold higher
- // powers of PX.
- pb.resize(space_required); tmp.resize(space_required);
- typename bitset_type::size_type kj, pb_degree = 0;
- pb.reset(); // pb == 0
- pb.set(pb_degree); // set the proper bit for the pb_degree
- value_type j = high_bit_mask_t<bit_count - 1>::high_bit;
- do
- {
- // Now choose a value of Kj as defined in section 3.3.
- // We must have 0 <= Kj < E*J = M.
- // The limit condition on Kj does not seem to be very relevant
- // in this program.
- kj = pb_degree;
- // Now multiply B by PX so B becomes PX**J.
- // In section 2.3, the values of Bi are defined with a minus sign :
- // don't forget this if you use them later!
- nb2::modulo2_multiply(poly, pb, tmp);
- pb_degree += degree;
- if (pb_degree >= pb.size()) {
- // Note that it is quite possible for kj to become bigger than
- // the new computed value of pb_degree.
- pb_degree = nb2::bitset_log2(pb);
- }
- // If U = 0, we need to set B to the next power of PX
- // and recalculate V.
- nb2::calculate_v(pb, kj, pb_degree, v);
- // Niederreiter (page 56, after equation (7), defines two
- // variables Q and U. We do not need Q explicitly, but we
- // do need U.
- // Advance Niederreiter's state variables.
- for (unsigned u = 0; j && u != degree; ++u, j >>= 1)
- {
- // Now C is obtained from V. Niederreiter
- // obtains A from V (page 65, near the bottom), and then gets
- // C from A (page 56, equation (7)). However this can be done
- // in one step. Here CI(J,R) corresponds to
- // Niederreiter's C(I,J,R), whose values we pack into array
- // CJ so that CJ(I,R) holds all the values of C(I,J,R) for J from 1 to NBITS.
- for (unsigned r = 0; r != bit_count; ++r) {
- value_type& num = cj[dimension * r + dim];
- // set the jth bit in num
- num = (num & ~j) | (-v[r + u] & j);
- }
- }
- } while (j != 0);
- }
- bits.swap(cj);
- }
- typename container_type::const_iterator iter_at(std::size_t n) const
- {
- BOOST_ASSERT(!(n > bits.size()));
- return bits.begin() + n;
- }
- private:
- container_type bits;
- };
- } // namespace qrng_detail
- typedef detail::qrng_tables::niederreiter_base2 default_niederreiter_base2_table;
- /** @endcond */
- //!Instantiations of class template niederreiter_base2_engine model a \quasi_random_number_generator.
- //!The niederreiter_base2_engine uses the algorithm described in
- //! \blockquote
- //!Bratley, Fox, Niederreiter, ACM Trans. Model. Comp. Sim. 2, 195 (1992).
- //! \endblockquote
- //!
- //!\attention niederreiter_base2_engine skips trivial zeroes at the start of the sequence. For example,
- //!the beginning of the 2-dimensional Niederreiter base 2 sequence in @c uniform_01 distribution will look
- //!like this:
- //!\code{.cpp}
- //!0.5, 0.5,
- //!0.75, 0.25,
- //!0.25, 0.75,
- //!0.375, 0.375,
- //!0.875, 0.875,
- //!...
- //!\endcode
- //!
- //!In the following documentation @c X denotes the concrete class of the template
- //!niederreiter_base2_engine returning objects of type @c UIntType, u and v are the values of @c X.
- //!
- //!Some member functions may throw exceptions of type std::range_error. This
- //!happens when the quasi-random domain is exhausted and the generator cannot produce
- //!any more values. The length of the low discrepancy sequence is given by
- //! \f$L=Dimension \times (2^{w} - 1)\f$.
- template<typename UIntType, unsigned w, typename Nb2Table = default_niederreiter_base2_table>
- class niederreiter_base2_engine
- : public qrng_detail::gray_coded_qrng<
- qrng_detail::niederreiter_base2_lattice<UIntType, w, Nb2Table>
- >
- {
- typedef qrng_detail::niederreiter_base2_lattice<UIntType, w, Nb2Table> lattice_t;
- typedef qrng_detail::gray_coded_qrng<lattice_t> base_t;
- public:
- //!Effects: Constructs the default `s`-dimensional Niederreiter base 2 quasi-random number generator.
- //!
- //!Throws: bad_alloc, invalid_argument, range_error.
- explicit niederreiter_base2_engine(std::size_t s)
- : base_t(s) // initialize lattice here
- {}
- #ifdef BOOST_RANDOM_DOXYGEN
- //=========================Doxygen needs this!==============================
- typedef UIntType result_type;
- //!Returns: Tight lower bound on the set of values returned by operator().
- //!
- //!Throws: nothing.
- static BOOST_CONSTEXPR result_type min BOOST_PREVENT_MACRO_SUBSTITUTION ()
- { return (base_t::min)(); }
- //!Returns: Tight upper bound on the set of values returned by operator().
- //!
- //!Throws: nothing.
- static BOOST_CONSTEXPR result_type max BOOST_PREVENT_MACRO_SUBSTITUTION ()
- { return (base_t::max)(); }
- //!Returns: The dimension of of the quasi-random domain.
- //!
- //!Throws: nothing.
- std::size_t dimension() const { return base_t::dimension(); }
- //!Effects: Resets the quasi-random number generator state to
- //!the one given by the default construction. Equivalent to u.seed(0).
- //!
- //!\brief Throws: nothing.
- void seed()
- {
- base_t::seed();
- }
- //!Effects: Effectively sets the quasi-random number generator state to the `init`-th
- //!vector in the `s`-dimensional quasi-random domain, where `s` == X::dimension().
- //!\code
- //!X u, v;
- //!for(int i = 0; i < N; ++i)
- //! for( std::size_t j = 0; j < u.dimension(); ++j )
- //! u();
- //!v.seed(N);
- //!assert(u() == v());
- //!\endcode
- //!
- //!\brief Throws: range_error.
- void seed(UIntType init)
- {
- base_t::seed(init);
- }
- //!Returns: Returns a successive element of an `s`-dimensional
- //!(s = X::dimension()) vector at each invocation. When all elements are
- //!exhausted, X::operator() begins anew with the starting element of a
- //!subsequent `s`-dimensional vector.
- //!
- //!Throws: range_error.
- result_type operator()()
- {
- return base_t::operator()();
- }
- //!Effects: Advances *this state as if `z` consecutive
- //!X::operator() invocations were executed.
- //!\code
- //!X u = v;
- //!for(int i = 0; i < N; ++i)
- //! u();
- //!v.discard(N);
- //!assert(u() == v());
- //!\endcode
- //!
- //!Throws: range_error.
- void discard(boost::uintmax_t z)
- {
- base_t::discard(z);
- }
- //!Returns true if the two generators will produce identical sequences of outputs.
- BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(niederreiter_base2_engine, x, y)
- { return static_cast<const base_t&>(x) == y; }
- //!Returns true if the two generators will produce different sequences of outputs.
- BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(niederreiter_base2_engine)
- //!Writes the textual representation of the generator to a @c std::ostream.
- BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, niederreiter_base2_engine, s)
- { return os << static_cast<const base_t&>(s); }
- //!Reads the textual representation of the generator from a @c std::istream.
- BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, niederreiter_base2_engine, s)
- { return is >> static_cast<base_t&>(s); }
- #endif // BOOST_RANDOM_DOXYGEN
- };
- /**
- * @attention This specialization of \niederreiter_base2_engine supports up to 4720 dimensions.
- *
- * Binary irreducible polynomials (primes in the ring `GF(2)[X]`, evaluated at `X=2`) were generated
- * while condition `max(prime)` < 2<sup>16</sup> was satisfied.
- *
- * There are exactly 4720 such primes, which yields a Niederreiter base 2 table for 4720 dimensions.
- *
- * However, it is possible to provide your own table to \niederreiter_base2_engine should the default one be insufficient.
- */
- typedef niederreiter_base2_engine<boost::uint_least64_t, 64u, default_niederreiter_base2_table> niederreiter_base2;
- } // namespace random
- } // namespace boost
- #endif // BOOST_RANDOM_NIEDERREITER_BASE2_HPP
|