123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292 |
- /* boost random/gamma_distribution.hpp header file
- *
- * Copyright Jens Maurer 2002
- * Copyright Steven Watanabe 2010
- * Distributed under the Boost Software License, Version 1.0. (See
- * accompanying file LICENSE_1_0.txt or copy at
- * http://www.boost.org/LICENSE_1_0.txt)
- *
- * See http://www.boost.org for most recent version including documentation.
- *
- * $Id$
- *
- */
- #ifndef BOOST_RANDOM_GAMMA_DISTRIBUTION_HPP
- #define BOOST_RANDOM_GAMMA_DISTRIBUTION_HPP
- #include <boost/config/no_tr1/cmath.hpp>
- #include <istream>
- #include <iosfwd>
- #include <boost/assert.hpp>
- #include <boost/limits.hpp>
- #include <boost/static_assert.hpp>
- #include <boost/random/detail/config.hpp>
- #include <boost/random/exponential_distribution.hpp>
- namespace boost {
- namespace random {
- // The algorithm is taken from Knuth
- /**
- * The gamma distribution is a continuous distribution with two
- * parameters alpha and beta. It produces values > 0.
- *
- * It has
- * \f$\displaystyle p(x) = x^{\alpha-1}\frac{e^{-x/\beta}}{\beta^\alpha\Gamma(\alpha)}\f$.
- */
- template<class RealType = double>
- class gamma_distribution
- {
- public:
- typedef RealType input_type;
- typedef RealType result_type;
- class param_type
- {
- public:
- typedef gamma_distribution distribution_type;
- /**
- * Constructs a @c param_type object from the "alpha" and "beta"
- * parameters.
- *
- * Requires: alpha > 0 && beta > 0
- */
- param_type(const RealType& alpha_arg = RealType(1.0),
- const RealType& beta_arg = RealType(1.0))
- : _alpha(alpha_arg), _beta(beta_arg)
- {
- }
- /** Returns the "alpha" parameter of the distribution. */
- RealType alpha() const { return _alpha; }
- /** Returns the "beta" parameter of the distribution. */
- RealType beta() const { return _beta; }
- #ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
- /** Writes the parameters to a @c std::ostream. */
- template<class CharT, class Traits>
- friend std::basic_ostream<CharT, Traits>&
- operator<<(std::basic_ostream<CharT, Traits>& os,
- const param_type& parm)
- {
- os << parm._alpha << ' ' << parm._beta;
- return os;
- }
-
- /** Reads the parameters from a @c std::istream. */
- template<class CharT, class Traits>
- friend std::basic_istream<CharT, Traits>&
- operator>>(std::basic_istream<CharT, Traits>& is, param_type& parm)
- {
- is >> parm._alpha >> std::ws >> parm._beta;
- return is;
- }
- #endif
- /** Returns true if the two sets of parameters are the same. */
- friend bool operator==(const param_type& lhs, const param_type& rhs)
- {
- return lhs._alpha == rhs._alpha && lhs._beta == rhs._beta;
- }
- /** Returns true if the two sets fo parameters are different. */
- friend bool operator!=(const param_type& lhs, const param_type& rhs)
- {
- return !(lhs == rhs);
- }
- private:
- RealType _alpha;
- RealType _beta;
- };
- #ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
- BOOST_STATIC_ASSERT(!std::numeric_limits<RealType>::is_integer);
- #endif
- /**
- * Creates a new gamma_distribution with parameters "alpha" and "beta".
- *
- * Requires: alpha > 0 && beta > 0
- */
- explicit gamma_distribution(const result_type& alpha_arg = result_type(1.0),
- const result_type& beta_arg = result_type(1.0))
- : _exp(result_type(1)), _alpha(alpha_arg), _beta(beta_arg)
- {
- BOOST_ASSERT(_alpha > result_type(0));
- BOOST_ASSERT(_beta > result_type(0));
- init();
- }
- /** Constructs a @c gamma_distribution from its parameters. */
- explicit gamma_distribution(const param_type& parm)
- : _exp(result_type(1)), _alpha(parm.alpha()), _beta(parm.beta())
- {
- init();
- }
- // compiler-generated copy ctor and assignment operator are fine
- /** Returns the "alpha" paramter of the distribution. */
- RealType alpha() const { return _alpha; }
- /** Returns the "beta" parameter of the distribution. */
- RealType beta() const { return _beta; }
- /** Returns the smallest value that the distribution can produce. */
- RealType min BOOST_PREVENT_MACRO_SUBSTITUTION () const { return 0; }
- /* Returns the largest value that the distribution can produce. */
- RealType max BOOST_PREVENT_MACRO_SUBSTITUTION () const
- { return (std::numeric_limits<RealType>::infinity)(); }
- /** Returns the parameters of the distribution. */
- param_type param() const { return param_type(_alpha, _beta); }
- /** Sets the parameters of the distribution. */
- void param(const param_type& parm)
- {
- _alpha = parm.alpha();
- _beta = parm.beta();
- init();
- }
-
- /**
- * Effects: Subsequent uses of the distribution do not depend
- * on values produced by any engine prior to invoking reset.
- */
- void reset() { _exp.reset(); }
- /**
- * Returns a random variate distributed according to
- * the gamma distribution.
- */
- template<class Engine>
- result_type operator()(Engine& eng)
- {
- #ifndef BOOST_NO_STDC_NAMESPACE
- // allow for Koenig lookup
- using std::tan; using std::sqrt; using std::exp; using std::log;
- using std::pow;
- #endif
- if(_alpha == result_type(1)) {
- return _exp(eng) * _beta;
- } else if(_alpha > result_type(1)) {
- // Can we have a boost::mathconst please?
- const result_type pi = result_type(3.14159265358979323846);
- for(;;) {
- result_type y = tan(pi * uniform_01<RealType>()(eng));
- result_type x = sqrt(result_type(2)*_alpha-result_type(1))*y
- + _alpha-result_type(1);
- if(x <= result_type(0))
- continue;
- if(uniform_01<RealType>()(eng) >
- (result_type(1)+y*y) * exp((_alpha-result_type(1))
- *log(x/(_alpha-result_type(1)))
- - sqrt(result_type(2)*_alpha
- -result_type(1))*y))
- continue;
- return x * _beta;
- }
- } else /* alpha < 1.0 */ {
- for(;;) {
- result_type u = uniform_01<RealType>()(eng);
- result_type y = _exp(eng);
- result_type x, q;
- if(u < _p) {
- x = exp(-y/_alpha);
- q = _p*exp(-x);
- } else {
- x = result_type(1)+y;
- q = _p + (result_type(1)-_p) * pow(x,_alpha-result_type(1));
- }
- if(u >= q)
- continue;
- return x * _beta;
- }
- }
- }
- template<class URNG>
- RealType operator()(URNG& urng, const param_type& parm) const
- {
- return gamma_distribution(parm)(urng);
- }
- #ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
- /** Writes a @c gamma_distribution to a @c std::ostream. */
- template<class CharT, class Traits>
- friend std::basic_ostream<CharT,Traits>&
- operator<<(std::basic_ostream<CharT,Traits>& os,
- const gamma_distribution& gd)
- {
- os << gd.param();
- return os;
- }
-
- /** Reads a @c gamma_distribution from a @c std::istream. */
- template<class CharT, class Traits>
- friend std::basic_istream<CharT,Traits>&
- operator>>(std::basic_istream<CharT,Traits>& is, gamma_distribution& gd)
- {
- gd.read(is);
- return is;
- }
- #endif
- /**
- * Returns true if the two distributions will produce identical
- * sequences of random variates given equal generators.
- */
- friend bool operator==(const gamma_distribution& lhs,
- const gamma_distribution& rhs)
- {
- return lhs._alpha == rhs._alpha
- && lhs._beta == rhs._beta
- && lhs._exp == rhs._exp;
- }
- /**
- * Returns true if the two distributions can produce different
- * sequences of random variates, given equal generators.
- */
- friend bool operator!=(const gamma_distribution& lhs,
- const gamma_distribution& rhs)
- {
- return !(lhs == rhs);
- }
- private:
- /// \cond hide_private_members
- template<class CharT, class Traits>
- void read(std::basic_istream<CharT, Traits>& is)
- {
- param_type parm;
- if(is >> parm) {
- param(parm);
- }
- }
- void init()
- {
- #ifndef BOOST_NO_STDC_NAMESPACE
- // allow for Koenig lookup
- using std::exp;
- #endif
- _p = exp(result_type(1)) / (_alpha + exp(result_type(1)));
- }
- /// \endcond
- exponential_distribution<RealType> _exp;
- result_type _alpha;
- result_type _beta;
- // some data precomputed from the parameters
- result_type _p;
- };
- } // namespace random
- using random::gamma_distribution;
- } // namespace boost
- #endif // BOOST_RANDOM_GAMMA_DISTRIBUTION_HPP
|