123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501 |
- // Boost.Polygon library detail/voronoi_robust_fpt.hpp header file
- // Copyright Andrii Sydorchuk 2010-2012.
- // Distributed under the Boost Software License, Version 1.0.
- // (See accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- // See http://www.boost.org for updates, documentation, and revision history.
- #ifndef BOOST_POLYGON_DETAIL_VORONOI_ROBUST_FPT
- #define BOOST_POLYGON_DETAIL_VORONOI_ROBUST_FPT
- #include <algorithm>
- #include <cmath>
- // Geometry predicates with floating-point variables usually require
- // high-precision predicates to retrieve the correct result.
- // Epsilon robust predicates give the result within some epsilon relative
- // error, but are a lot faster than high-precision predicates.
- // To make algorithm robust and efficient epsilon robust predicates are
- // used at the first step. In case of the undefined result high-precision
- // arithmetic is used to produce required robustness. This approach
- // requires exact computation of epsilon intervals within which epsilon
- // robust predicates have undefined value.
- // There are two ways to measure an error of floating-point calculations:
- // relative error and ULPs (units in the last place).
- // Let EPS be machine epsilon, then next inequalities have place:
- // 1 EPS <= 1 ULP <= 2 EPS (1), 0.5 ULP <= 1 EPS <= 1 ULP (2).
- // ULPs are good for measuring rounding errors and comparing values.
- // Relative errors are good for computation of general relative
- // error of formulas or expressions. So to calculate epsilon
- // interval within which epsilon robust predicates have undefined result
- // next schema is used:
- // 1) Compute rounding errors of initial variables using ULPs;
- // 2) Transform ULPs to epsilons using upper bound of the (1);
- // 3) Compute relative error of the formula using epsilon arithmetic;
- // 4) Transform epsilon to ULPs using upper bound of the (2);
- // In case two values are inside undefined ULP range use high-precision
- // arithmetic to produce the correct result, else output the result.
- // Look at almost_equal function to see how two floating-point variables
- // are checked to fit in the ULP range.
- // If A has relative error of r(A) and B has relative error of r(B) then:
- // 1) r(A + B) <= max(r(A), r(B)), for A * B >= 0;
- // 2) r(A - B) <= B*r(A)+A*r(B)/(A-B), for A * B >= 0;
- // 2) r(A * B) <= r(A) + r(B);
- // 3) r(A / B) <= r(A) + r(B);
- // In addition rounding error should be added, that is always equal to
- // 0.5 ULP or at most 1 epsilon. As you might see from the above formulas
- // subtraction relative error may be extremely large, that's why
- // epsilon robust comparator class is used to store floating point values
- // and compute subtraction as the final step of the evaluation.
- // For further information about relative errors and ULPs try this link:
- // http://docs.sun.com/source/806-3568/ncg_goldberg.html
- namespace boost {
- namespace polygon {
- namespace detail {
- template <typename T>
- T get_sqrt(const T& that) {
- return (std::sqrt)(that);
- }
- template <typename T>
- bool is_pos(const T& that) {
- return that > 0;
- }
- template <typename T>
- bool is_neg(const T& that) {
- return that < 0;
- }
- template <typename T>
- bool is_zero(const T& that) {
- return that == 0;
- }
- template <typename _fpt>
- class robust_fpt {
- public:
- typedef _fpt floating_point_type;
- typedef _fpt relative_error_type;
- // Rounding error is at most 1 EPS.
- enum {
- ROUNDING_ERROR = 1
- };
- robust_fpt() : fpv_(0.0), re_(0.0) {}
- explicit robust_fpt(floating_point_type fpv) :
- fpv_(fpv), re_(0.0) {}
- robust_fpt(floating_point_type fpv, relative_error_type error) :
- fpv_(fpv), re_(error) {}
- floating_point_type fpv() const { return fpv_; }
- relative_error_type re() const { return re_; }
- relative_error_type ulp() const { return re_; }
- bool has_pos_value() const {
- return is_pos(fpv_);
- }
- bool has_neg_value() const {
- return is_neg(fpv_);
- }
- bool has_zero_value() const {
- return is_zero(fpv_);
- }
- robust_fpt operator-() const {
- return robust_fpt(-fpv_, re_);
- }
- robust_fpt& operator+=(const robust_fpt& that) {
- floating_point_type fpv = this->fpv_ + that.fpv_;
- if ((!is_neg(this->fpv_) && !is_neg(that.fpv_)) ||
- (!is_pos(this->fpv_) && !is_pos(that.fpv_))) {
- this->re_ = (std::max)(this->re_, that.re_) + ROUNDING_ERROR;
- } else {
- floating_point_type temp =
- (this->fpv_ * this->re_ - that.fpv_ * that.re_) / fpv;
- if (is_neg(temp))
- temp = -temp;
- this->re_ = temp + ROUNDING_ERROR;
- }
- this->fpv_ = fpv;
- return *this;
- }
- robust_fpt& operator-=(const robust_fpt& that) {
- floating_point_type fpv = this->fpv_ - that.fpv_;
- if ((!is_neg(this->fpv_) && !is_pos(that.fpv_)) ||
- (!is_pos(this->fpv_) && !is_neg(that.fpv_))) {
- this->re_ = (std::max)(this->re_, that.re_) + ROUNDING_ERROR;
- } else {
- floating_point_type temp =
- (this->fpv_ * this->re_ + that.fpv_ * that.re_) / fpv;
- if (is_neg(temp))
- temp = -temp;
- this->re_ = temp + ROUNDING_ERROR;
- }
- this->fpv_ = fpv;
- return *this;
- }
- robust_fpt& operator*=(const robust_fpt& that) {
- this->re_ += that.re_ + ROUNDING_ERROR;
- this->fpv_ *= that.fpv_;
- return *this;
- }
- robust_fpt& operator/=(const robust_fpt& that) {
- this->re_ += that.re_ + ROUNDING_ERROR;
- this->fpv_ /= that.fpv_;
- return *this;
- }
- robust_fpt operator+(const robust_fpt& that) const {
- floating_point_type fpv = this->fpv_ + that.fpv_;
- relative_error_type re;
- if ((!is_neg(this->fpv_) && !is_neg(that.fpv_)) ||
- (!is_pos(this->fpv_) && !is_pos(that.fpv_))) {
- re = (std::max)(this->re_, that.re_) + ROUNDING_ERROR;
- } else {
- floating_point_type temp =
- (this->fpv_ * this->re_ - that.fpv_ * that.re_) / fpv;
- if (is_neg(temp))
- temp = -temp;
- re = temp + ROUNDING_ERROR;
- }
- return robust_fpt(fpv, re);
- }
- robust_fpt operator-(const robust_fpt& that) const {
- floating_point_type fpv = this->fpv_ - that.fpv_;
- relative_error_type re;
- if ((!is_neg(this->fpv_) && !is_pos(that.fpv_)) ||
- (!is_pos(this->fpv_) && !is_neg(that.fpv_))) {
- re = (std::max)(this->re_, that.re_) + ROUNDING_ERROR;
- } else {
- floating_point_type temp =
- (this->fpv_ * this->re_ + that.fpv_ * that.re_) / fpv;
- if (is_neg(temp))
- temp = -temp;
- re = temp + ROUNDING_ERROR;
- }
- return robust_fpt(fpv, re);
- }
- robust_fpt operator*(const robust_fpt& that) const {
- floating_point_type fpv = this->fpv_ * that.fpv_;
- relative_error_type re = this->re_ + that.re_ + ROUNDING_ERROR;
- return robust_fpt(fpv, re);
- }
- robust_fpt operator/(const robust_fpt& that) const {
- floating_point_type fpv = this->fpv_ / that.fpv_;
- relative_error_type re = this->re_ + that.re_ + ROUNDING_ERROR;
- return robust_fpt(fpv, re);
- }
- robust_fpt sqrt() const {
- return robust_fpt(get_sqrt(fpv_),
- re_ * static_cast<relative_error_type>(0.5) +
- ROUNDING_ERROR);
- }
- private:
- floating_point_type fpv_;
- relative_error_type re_;
- };
- template <typename T>
- robust_fpt<T> get_sqrt(const robust_fpt<T>& that) {
- return that.sqrt();
- }
- template <typename T>
- bool is_pos(const robust_fpt<T>& that) {
- return that.has_pos_value();
- }
- template <typename T>
- bool is_neg(const robust_fpt<T>& that) {
- return that.has_neg_value();
- }
- template <typename T>
- bool is_zero(const robust_fpt<T>& that) {
- return that.has_zero_value();
- }
- // robust_dif consists of two not negative values: value1 and value2.
- // The resulting expression is equal to the value1 - value2.
- // Subtraction of a positive value is equivalent to the addition to value2
- // and subtraction of a negative value is equivalent to the addition to
- // value1. The structure implicitly avoids difference computation.
- template <typename T>
- class robust_dif {
- public:
- robust_dif() :
- positive_sum_(0),
- negative_sum_(0) {}
- explicit robust_dif(const T& value) :
- positive_sum_((value > 0)?value:0),
- negative_sum_((value < 0)?-value:0) {}
- robust_dif(const T& pos, const T& neg) :
- positive_sum_(pos),
- negative_sum_(neg) {}
- T dif() const {
- return positive_sum_ - negative_sum_;
- }
- T pos() const {
- return positive_sum_;
- }
- T neg() const {
- return negative_sum_;
- }
- robust_dif<T> operator-() const {
- return robust_dif(negative_sum_, positive_sum_);
- }
- robust_dif<T>& operator+=(const T& val) {
- if (!is_neg(val))
- positive_sum_ += val;
- else
- negative_sum_ -= val;
- return *this;
- }
- robust_dif<T>& operator+=(const robust_dif<T>& that) {
- positive_sum_ += that.positive_sum_;
- negative_sum_ += that.negative_sum_;
- return *this;
- }
- robust_dif<T>& operator-=(const T& val) {
- if (!is_neg(val))
- negative_sum_ += val;
- else
- positive_sum_ -= val;
- return *this;
- }
- robust_dif<T>& operator-=(const robust_dif<T>& that) {
- positive_sum_ += that.negative_sum_;
- negative_sum_ += that.positive_sum_;
- return *this;
- }
- robust_dif<T>& operator*=(const T& val) {
- if (!is_neg(val)) {
- positive_sum_ *= val;
- negative_sum_ *= val;
- } else {
- positive_sum_ *= -val;
- negative_sum_ *= -val;
- swap();
- }
- return *this;
- }
- robust_dif<T>& operator*=(const robust_dif<T>& that) {
- T positive_sum = this->positive_sum_ * that.positive_sum_ +
- this->negative_sum_ * that.negative_sum_;
- T negative_sum = this->positive_sum_ * that.negative_sum_ +
- this->negative_sum_ * that.positive_sum_;
- positive_sum_ = positive_sum;
- negative_sum_ = negative_sum;
- return *this;
- }
- robust_dif<T>& operator/=(const T& val) {
- if (!is_neg(val)) {
- positive_sum_ /= val;
- negative_sum_ /= val;
- } else {
- positive_sum_ /= -val;
- negative_sum_ /= -val;
- swap();
- }
- return *this;
- }
- private:
- void swap() {
- (std::swap)(positive_sum_, negative_sum_);
- }
- T positive_sum_;
- T negative_sum_;
- };
- template<typename T>
- robust_dif<T> operator+(const robust_dif<T>& lhs,
- const robust_dif<T>& rhs) {
- return robust_dif<T>(lhs.pos() + rhs.pos(), lhs.neg() + rhs.neg());
- }
- template<typename T>
- robust_dif<T> operator+(const robust_dif<T>& lhs, const T& rhs) {
- if (!is_neg(rhs)) {
- return robust_dif<T>(lhs.pos() + rhs, lhs.neg());
- } else {
- return robust_dif<T>(lhs.pos(), lhs.neg() - rhs);
- }
- }
- template<typename T>
- robust_dif<T> operator+(const T& lhs, const robust_dif<T>& rhs) {
- if (!is_neg(lhs)) {
- return robust_dif<T>(lhs + rhs.pos(), rhs.neg());
- } else {
- return robust_dif<T>(rhs.pos(), rhs.neg() - lhs);
- }
- }
- template<typename T>
- robust_dif<T> operator-(const robust_dif<T>& lhs,
- const robust_dif<T>& rhs) {
- return robust_dif<T>(lhs.pos() + rhs.neg(), lhs.neg() + rhs.pos());
- }
- template<typename T>
- robust_dif<T> operator-(const robust_dif<T>& lhs, const T& rhs) {
- if (!is_neg(rhs)) {
- return robust_dif<T>(lhs.pos(), lhs.neg() + rhs);
- } else {
- return robust_dif<T>(lhs.pos() - rhs, lhs.neg());
- }
- }
- template<typename T>
- robust_dif<T> operator-(const T& lhs, const robust_dif<T>& rhs) {
- if (!is_neg(lhs)) {
- return robust_dif<T>(lhs + rhs.neg(), rhs.pos());
- } else {
- return robust_dif<T>(rhs.neg(), rhs.pos() - lhs);
- }
- }
- template<typename T>
- robust_dif<T> operator*(const robust_dif<T>& lhs,
- const robust_dif<T>& rhs) {
- T res_pos = lhs.pos() * rhs.pos() + lhs.neg() * rhs.neg();
- T res_neg = lhs.pos() * rhs.neg() + lhs.neg() * rhs.pos();
- return robust_dif<T>(res_pos, res_neg);
- }
- template<typename T>
- robust_dif<T> operator*(const robust_dif<T>& lhs, const T& val) {
- if (!is_neg(val)) {
- return robust_dif<T>(lhs.pos() * val, lhs.neg() * val);
- } else {
- return robust_dif<T>(-lhs.neg() * val, -lhs.pos() * val);
- }
- }
- template<typename T>
- robust_dif<T> operator*(const T& val, const robust_dif<T>& rhs) {
- if (!is_neg(val)) {
- return robust_dif<T>(val * rhs.pos(), val * rhs.neg());
- } else {
- return robust_dif<T>(-val * rhs.neg(), -val * rhs.pos());
- }
- }
- template<typename T>
- robust_dif<T> operator/(const robust_dif<T>& lhs, const T& val) {
- if (!is_neg(val)) {
- return robust_dif<T>(lhs.pos() / val, lhs.neg() / val);
- } else {
- return robust_dif<T>(-lhs.neg() / val, -lhs.pos() / val);
- }
- }
- // Used to compute expressions that operate with sqrts with predefined
- // relative error. Evaluates expressions of the next type:
- // sum(i = 1 .. n)(A[i] * sqrt(B[i])), 1 <= n <= 4.
- template <typename _int, typename _fpt, typename _converter>
- class robust_sqrt_expr {
- public:
- enum MAX_RELATIVE_ERROR {
- MAX_RELATIVE_ERROR_EVAL1 = 4,
- MAX_RELATIVE_ERROR_EVAL2 = 7,
- MAX_RELATIVE_ERROR_EVAL3 = 16,
- MAX_RELATIVE_ERROR_EVAL4 = 25
- };
- // Evaluates expression (re = 4 EPS):
- // A[0] * sqrt(B[0]).
- _fpt eval1(_int* A, _int* B) {
- _fpt a = convert(A[0]);
- _fpt b = convert(B[0]);
- return a * get_sqrt(b);
- }
- // Evaluates expression (re = 7 EPS):
- // A[0] * sqrt(B[0]) + A[1] * sqrt(B[1]).
- _fpt eval2(_int* A, _int* B) {
- _fpt a = eval1(A, B);
- _fpt b = eval1(A + 1, B + 1);
- if ((!is_neg(a) && !is_neg(b)) ||
- (!is_pos(a) && !is_pos(b)))
- return a + b;
- return convert(A[0] * A[0] * B[0] - A[1] * A[1] * B[1]) / (a - b);
- }
- // Evaluates expression (re = 16 EPS):
- // A[0] * sqrt(B[0]) + A[1] * sqrt(B[1]) + A[2] * sqrt(B[2]).
- _fpt eval3(_int* A, _int* B) {
- _fpt a = eval2(A, B);
- _fpt b = eval1(A + 2, B + 2);
- if ((!is_neg(a) && !is_neg(b)) ||
- (!is_pos(a) && !is_pos(b)))
- return a + b;
- tA[3] = A[0] * A[0] * B[0] + A[1] * A[1] * B[1] - A[2] * A[2] * B[2];
- tB[3] = 1;
- tA[4] = A[0] * A[1] * 2;
- tB[4] = B[0] * B[1];
- return eval2(tA + 3, tB + 3) / (a - b);
- }
- // Evaluates expression (re = 25 EPS):
- // A[0] * sqrt(B[0]) + A[1] * sqrt(B[1]) +
- // A[2] * sqrt(B[2]) + A[3] * sqrt(B[3]).
- _fpt eval4(_int* A, _int* B) {
- _fpt a = eval2(A, B);
- _fpt b = eval2(A + 2, B + 2);
- if ((!is_neg(a) && !is_neg(b)) ||
- (!is_pos(a) && !is_pos(b)))
- return a + b;
- tA[0] = A[0] * A[0] * B[0] + A[1] * A[1] * B[1] -
- A[2] * A[2] * B[2] - A[3] * A[3] * B[3];
- tB[0] = 1;
- tA[1] = A[0] * A[1] * 2;
- tB[1] = B[0] * B[1];
- tA[2] = A[2] * A[3] * -2;
- tB[2] = B[2] * B[3];
- return eval3(tA, tB) / (a - b);
- }
- private:
- _int tA[5];
- _int tB[5];
- _converter convert;
- };
- } // detail
- } // polygon
- } // boost
- #endif // BOOST_POLYGON_DETAIL_VORONOI_ROBUST_FPT
|