123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907 |
- /*
- Copyright 2008 Intel Corporation
- Use, modification and distribution are subject to the Boost Software License,
- Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
- http://www.boost.org/LICENSE_1_0.txt).
- */
- #ifndef BOOST_POLYGON_POLYGON_ARBITRARY_FORMATION_HPP
- #define BOOST_POLYGON_POLYGON_ARBITRARY_FORMATION_HPP
- namespace boost { namespace polygon{
- template <typename T, typename T2>
- struct PolyLineArbitraryByConcept {};
- template <typename T>
- class poly_line_arbitrary_polygon_data;
- template <typename T>
- class poly_line_arbitrary_hole_data;
- template <typename Unit>
- struct scanline_base {
- typedef point_data<Unit> Point;
- typedef std::pair<Point, Point> half_edge;
- class less_point {
- public:
- typedef Point first_argument_type;
- typedef Point second_argument_type;
- typedef bool result_type;
- inline less_point() {}
- inline bool operator () (const Point& pt1, const Point& pt2) const {
- if(pt1.get(HORIZONTAL) < pt2.get(HORIZONTAL)) return true;
- if(pt1.get(HORIZONTAL) == pt2.get(HORIZONTAL)) {
- if(pt1.get(VERTICAL) < pt2.get(VERTICAL)) return true;
- }
- return false;
- }
- };
- static inline bool between(Point pt, Point pt1, Point pt2) {
- less_point lp;
- if(lp(pt1, pt2))
- return lp(pt, pt2) && lp(pt1, pt);
- return lp(pt, pt1) && lp(pt2, pt);
- }
- template <typename area_type>
- static inline Unit compute_intercept(const area_type& dy2,
- const area_type& dx1,
- const area_type& dx2) {
- //intercept = dy2 * dx1 / dx2
- //return (Unit)(((area_type)dy2 * (area_type)dx1) / (area_type)dx2);
- area_type dx1_q = dx1 / dx2;
- area_type dx1_r = dx1 % dx2;
- return dx1_q * dy2 + (dy2 * dx1_r)/dx2;
- }
- template <typename area_type>
- static inline bool equal_slope(area_type dx1, area_type dy1, area_type dx2, area_type dy2) {
- typedef typename coordinate_traits<Unit>::unsigned_area_type unsigned_product_type;
- unsigned_product_type cross_1 = (unsigned_product_type)(dx2 < 0 ? -dx2 :dx2) * (unsigned_product_type)(dy1 < 0 ? -dy1 : dy1);
- unsigned_product_type cross_2 = (unsigned_product_type)(dx1 < 0 ? -dx1 :dx1) * (unsigned_product_type)(dy2 < 0 ? -dy2 : dy2);
- int dx1_sign = dx1 < 0 ? -1 : 1;
- int dx2_sign = dx2 < 0 ? -1 : 1;
- int dy1_sign = dy1 < 0 ? -1 : 1;
- int dy2_sign = dy2 < 0 ? -1 : 1;
- int cross_1_sign = dx2_sign * dy1_sign;
- int cross_2_sign = dx1_sign * dy2_sign;
- return cross_1 == cross_2 && (cross_1_sign == cross_2_sign || cross_1 == 0);
- }
- template <typename T>
- static inline bool equal_slope_hp(const T& dx1, const T& dy1, const T& dx2, const T& dy2) {
- return dx1 * dy2 == dx2 * dy1;
- }
- static inline bool equal_slope(const Unit& x, const Unit& y,
- const Point& pt1, const Point& pt2) {
- const Point* pts[2] = {&pt1, &pt2};
- typedef typename coordinate_traits<Unit>::manhattan_area_type at;
- at dy2 = (at)pts[1]->get(VERTICAL) - (at)y;
- at dy1 = (at)pts[0]->get(VERTICAL) - (at)y;
- at dx2 = (at)pts[1]->get(HORIZONTAL) - (at)x;
- at dx1 = (at)pts[0]->get(HORIZONTAL) - (at)x;
- return equal_slope(dx1, dy1, dx2, dy2);
- }
- template <typename area_type>
- static inline bool less_slope(area_type dx1, area_type dy1, area_type dx2, area_type dy2) {
- //reflext x and y slopes to right hand side half plane
- if(dx1 < 0) {
- dy1 *= -1;
- dx1 *= -1;
- } else if(dx1 == 0) {
- //if the first slope is vertical the first cannot be less
- return false;
- }
- if(dx2 < 0) {
- dy2 *= -1;
- dx2 *= -1;
- } else if(dx2 == 0) {
- //if the second slope is vertical the first is always less unless it is also vertical, in which case they are equal
- return dx1 != 0;
- }
- typedef typename coordinate_traits<Unit>::unsigned_area_type unsigned_product_type;
- unsigned_product_type cross_1 = (unsigned_product_type)(dx2 < 0 ? -dx2 :dx2) * (unsigned_product_type)(dy1 < 0 ? -dy1 : dy1);
- unsigned_product_type cross_2 = (unsigned_product_type)(dx1 < 0 ? -dx1 :dx1) * (unsigned_product_type)(dy2 < 0 ? -dy2 : dy2);
- int dx1_sign = dx1 < 0 ? -1 : 1;
- int dx2_sign = dx2 < 0 ? -1 : 1;
- int dy1_sign = dy1 < 0 ? -1 : 1;
- int dy2_sign = dy2 < 0 ? -1 : 1;
- int cross_1_sign = dx2_sign * dy1_sign;
- int cross_2_sign = dx1_sign * dy2_sign;
- if(cross_1_sign < cross_2_sign) return true;
- if(cross_2_sign < cross_1_sign) return false;
- if(cross_1_sign == -1) return cross_2 < cross_1;
- return cross_1 < cross_2;
- }
- static inline bool less_slope(const Unit& x, const Unit& y,
- const Point& pt1, const Point& pt2) {
- const Point* pts[2] = {&pt1, &pt2};
- //compute y value on edge from pt_ to pts[1] at the x value of pts[0]
- typedef typename coordinate_traits<Unit>::manhattan_area_type at;
- at dy2 = (at)pts[1]->get(VERTICAL) - (at)y;
- at dy1 = (at)pts[0]->get(VERTICAL) - (at)y;
- at dx2 = (at)pts[1]->get(HORIZONTAL) - (at)x;
- at dx1 = (at)pts[0]->get(HORIZONTAL) - (at)x;
- return less_slope(dx1, dy1, dx2, dy2);
- }
- //return -1 below, 0 on and 1 above line
- static inline int on_above_or_below(Point pt, const half_edge& he) {
- if(pt == he.first || pt == he.second) return 0;
- if(equal_slope(pt.get(HORIZONTAL), pt.get(VERTICAL), he.first, he.second)) return 0;
- bool less_result = less_slope(pt.get(HORIZONTAL), pt.get(VERTICAL), he.first, he.second);
- int retval = less_result ? -1 : 1;
- less_point lp;
- if(lp(he.second, he.first)) retval *= -1;
- if(!between(pt, he.first, he.second)) retval *= -1;
- return retval;
- }
- //returns true is the segment intersects the integer grid square with lower
- //left corner at point
- static inline bool intersects_grid(Point pt, const half_edge& he) {
- if(pt == he.second) return true;
- if(pt == he.first) return true;
- rectangle_data<Unit> rect1;
- set_points(rect1, he.first, he.second);
- if(contains(rect1, pt, true)) {
- if(is_vertical(he) || is_horizontal(he)) return true;
- } else {
- return false; //can't intersect a grid not within bounding box
- }
- Unit x = pt.get(HORIZONTAL);
- Unit y = pt.get(VERTICAL);
- if(equal_slope(x, y, he.first, he.second) &&
- between(pt, he.first, he.second)) return true;
- Point pt01(pt.get(HORIZONTAL), pt.get(VERTICAL) + 1);
- Point pt10(pt.get(HORIZONTAL) + 1, pt.get(VERTICAL));
- Point pt11(pt.get(HORIZONTAL) + 1, pt.get(VERTICAL) + 1);
- // if(pt01 == he.first) return true;
- // if(pt10 == he.first) return true;
- // if(pt11 == he.first) return true;
- // if(pt01 == he.second) return true;
- // if(pt10 == he.second) return true;
- // if(pt11 == he.second) return true;
- //check non-integer intersections
- half_edge widget1(pt, pt11);
- //intersects but not just at pt11
- if(intersects(widget1, he) && on_above_or_below(pt11, he)) return true;
- half_edge widget2(pt01, pt10);
- //intersects but not just at pt01 or 10
- if(intersects(widget2, he) && on_above_or_below(pt01, he) && on_above_or_below(pt10, he)) return true;
- return false;
- }
- static inline Unit evalAtXforYlazy(Unit xIn, Point pt, Point other_pt) {
- long double
- evalAtXforYret, evalAtXforYxIn, evalAtXforYx1, evalAtXforYy1, evalAtXforYdx1, evalAtXforYdx,
- evalAtXforYdy, evalAtXforYx2, evalAtXforYy2, evalAtXforY0;
- //y = (x - x1)dy/dx + y1
- //y = (xIn - pt.x)*(other_pt.y-pt.y)/(other_pt.x-pt.x) + pt.y
- //assert pt.x != other_pt.x
- if(pt.y() == other_pt.y())
- return pt.y();
- evalAtXforYxIn = xIn;
- evalAtXforYx1 = pt.get(HORIZONTAL);
- evalAtXforYy1 = pt.get(VERTICAL);
- evalAtXforYdx1 = evalAtXforYxIn - evalAtXforYx1;
- evalAtXforY0 = 0;
- if(evalAtXforYdx1 == evalAtXforY0) return (Unit)evalAtXforYy1;
- evalAtXforYx2 = other_pt.get(HORIZONTAL);
- evalAtXforYy2 = other_pt.get(VERTICAL);
- evalAtXforYdx = evalAtXforYx2 - evalAtXforYx1;
- evalAtXforYdy = evalAtXforYy2 - evalAtXforYy1;
- evalAtXforYret = ((evalAtXforYdx1) * evalAtXforYdy / evalAtXforYdx + evalAtXforYy1);
- return (Unit)evalAtXforYret;
- }
- static inline typename high_precision_type<Unit>::type evalAtXforY(Unit xIn, Point pt, Point other_pt) {
- typename high_precision_type<Unit>::type
- evalAtXforYret, evalAtXforYxIn, evalAtXforYx1, evalAtXforYy1, evalAtXforYdx1, evalAtXforYdx,
- evalAtXforYdy, evalAtXforYx2, evalAtXforYy2, evalAtXforY0;
- //y = (x - x1)dy/dx + y1
- //y = (xIn - pt.x)*(other_pt.y-pt.y)/(other_pt.x-pt.x) + pt.y
- //assert pt.x != other_pt.x
- typedef typename high_precision_type<Unit>::type high_precision;
- if(pt.y() == other_pt.y())
- return (high_precision)pt.y();
- evalAtXforYxIn = (high_precision)xIn;
- evalAtXforYx1 = pt.get(HORIZONTAL);
- evalAtXforYy1 = pt.get(VERTICAL);
- evalAtXforYdx1 = evalAtXforYxIn - evalAtXforYx1;
- evalAtXforY0 = high_precision(0);
- if(evalAtXforYdx1 == evalAtXforY0) return evalAtXforYret = evalAtXforYy1;
- evalAtXforYx2 = (high_precision)other_pt.get(HORIZONTAL);
- evalAtXforYy2 = (high_precision)other_pt.get(VERTICAL);
- evalAtXforYdx = evalAtXforYx2 - evalAtXforYx1;
- evalAtXforYdy = evalAtXforYy2 - evalAtXforYy1;
- evalAtXforYret = ((evalAtXforYdx1) * evalAtXforYdy / evalAtXforYdx + evalAtXforYy1);
- return evalAtXforYret;
- }
- struct evalAtXforYPack {
- typename high_precision_type<Unit>::type
- evalAtXforYret, evalAtXforYxIn, evalAtXforYx1, evalAtXforYy1, evalAtXforYdx1, evalAtXforYdx,
- evalAtXforYdy, evalAtXforYx2, evalAtXforYy2, evalAtXforY0;
- inline const typename high_precision_type<Unit>::type& evalAtXforY(Unit xIn, Point pt, Point other_pt) {
- //y = (x - x1)dy/dx + y1
- //y = (xIn - pt.x)*(other_pt.y-pt.y)/(other_pt.x-pt.x) + pt.y
- //assert pt.x != other_pt.x
- typedef typename high_precision_type<Unit>::type high_precision;
- if(pt.y() == other_pt.y()) {
- evalAtXforYret = (high_precision)pt.y();
- return evalAtXforYret;
- }
- evalAtXforYxIn = (high_precision)xIn;
- evalAtXforYx1 = pt.get(HORIZONTAL);
- evalAtXforYy1 = pt.get(VERTICAL);
- evalAtXforYdx1 = evalAtXforYxIn - evalAtXforYx1;
- evalAtXforY0 = high_precision(0);
- if(evalAtXforYdx1 == evalAtXforY0) return evalAtXforYret = evalAtXforYy1;
- evalAtXforYx2 = (high_precision)other_pt.get(HORIZONTAL);
- evalAtXforYy2 = (high_precision)other_pt.get(VERTICAL);
- evalAtXforYdx = evalAtXforYx2 - evalAtXforYx1;
- evalAtXforYdy = evalAtXforYy2 - evalAtXforYy1;
- evalAtXforYret = ((evalAtXforYdx1) * evalAtXforYdy / evalAtXforYdx + evalAtXforYy1);
- return evalAtXforYret;
- }
- };
- static inline bool is_vertical(const half_edge& he) {
- return he.first.get(HORIZONTAL) == he.second.get(HORIZONTAL);
- }
- static inline bool is_horizontal(const half_edge& he) {
- return he.first.get(VERTICAL) == he.second.get(VERTICAL);
- }
- static inline bool is_45_degree(const half_edge& he) {
- return euclidean_distance(he.first, he.second, HORIZONTAL) == euclidean_distance(he.first, he.second, VERTICAL);
- }
- //scanline comparator functor
- class less_half_edge {
- private:
- Unit *x_; //x value at which to apply comparison
- int *justBefore_;
- evalAtXforYPack * pack_;
- public:
- typedef half_edge first_argument_type;
- typedef half_edge second_argument_type;
- typedef bool result_type;
- inline less_half_edge() : x_(0), justBefore_(0), pack_(0) {}
- inline less_half_edge(Unit *x, int *justBefore, evalAtXforYPack * packIn) : x_(x), justBefore_(justBefore), pack_(packIn) {}
- inline less_half_edge(const less_half_edge& that) : x_(that.x_), justBefore_(that.justBefore_),
- pack_(that.pack_){}
- inline less_half_edge& operator=(const less_half_edge& that) {
- x_ = that.x_;
- justBefore_ = that.justBefore_;
- pack_ = that.pack_;
- return *this; }
- inline bool operator () (const half_edge& elm1, const half_edge& elm2) const {
- if((std::max)(elm1.first.y(), elm1.second.y()) < (std::min)(elm2.first.y(), elm2.second.y()))
- return true;
- if((std::min)(elm1.first.y(), elm1.second.y()) > (std::max)(elm2.first.y(), elm2.second.y()))
- return false;
- //check if either x of elem1 is equal to x_
- Unit localx = *x_;
- Unit elm1y = 0;
- bool elm1_at_x = false;
- if(localx == elm1.first.get(HORIZONTAL)) {
- elm1_at_x = true;
- elm1y = elm1.first.get(VERTICAL);
- } else if(localx == elm1.second.get(HORIZONTAL)) {
- elm1_at_x = true;
- elm1y = elm1.second.get(VERTICAL);
- }
- Unit elm2y = 0;
- bool elm2_at_x = false;
- if(localx == elm2.first.get(HORIZONTAL)) {
- elm2_at_x = true;
- elm2y = elm2.first.get(VERTICAL);
- } else if(localx == elm2.second.get(HORIZONTAL)) {
- elm2_at_x = true;
- elm2y = elm2.second.get(VERTICAL);
- }
- bool retval = false;
- if(!(elm1_at_x && elm2_at_x)) {
- //at least one of the segments doesn't have an end point a the current x
- //-1 below, 1 above
- int pt1_oab = on_above_or_below(elm1.first, half_edge(elm2.first, elm2.second));
- int pt2_oab = on_above_or_below(elm1.second, half_edge(elm2.first, elm2.second));
- if(pt1_oab == pt2_oab) {
- if(pt1_oab == -1)
- retval = true; //pt1 is below elm2 so elm1 is below elm2
- } else {
- //the segments can't cross so elm2 is on whatever side of elm1 that one of its ends is
- int pt3_oab = on_above_or_below(elm2.first, half_edge(elm1.first, elm1.second));
- if(pt3_oab == 1)
- retval = true; //elm1's point is above elm1
- }
- } else {
- if(elm1y < elm2y) {
- retval = true;
- } else if(elm1y == elm2y) {
- if(elm1 == elm2)
- return false;
- retval = less_slope(elm1.second.get(HORIZONTAL) - elm1.first.get(HORIZONTAL),
- elm1.second.get(VERTICAL) - elm1.first.get(VERTICAL),
- elm2.second.get(HORIZONTAL) - elm2.first.get(HORIZONTAL),
- elm2.second.get(VERTICAL) - elm2.first.get(VERTICAL));
- retval = ((*justBefore_) != 0) ^ retval;
- }
- }
- return retval;
- }
- };
- template <typename unsigned_product_type>
- static inline void unsigned_add(unsigned_product_type& result, int& result_sign, unsigned_product_type a, int a_sign, unsigned_product_type b, int b_sign) {
- int switcher = 0;
- if(a_sign < 0) switcher += 1;
- if(b_sign < 0) switcher += 2;
- if(a < b) switcher += 4;
- switch (switcher) {
- case 0: //both positive
- result = a + b;
- result_sign = 1;
- break;
- case 1: //a is negative
- result = a - b;
- result_sign = -1;
- break;
- case 2: //b is negative
- result = a - b;
- result_sign = 1;
- break;
- case 3: //both negative
- result = a + b;
- result_sign = -1;
- break;
- case 4: //both positive
- result = a + b;
- result_sign = 1;
- break;
- case 5: //a is negative
- result = b - a;
- result_sign = 1;
- break;
- case 6: //b is negative
- result = b - a;
- result_sign = -1;
- break;
- case 7: //both negative
- result = b + a;
- result_sign = -1;
- break;
- };
- }
- struct compute_intersection_pack {
- typedef typename high_precision_type<Unit>::type high_precision;
- high_precision y_high, dx1, dy1, dx2, dy2, x11, x21, y11, y21, x_num, y_num, x_den, y_den, x, y;
- static inline bool compute_lazy_intersection(Point& intersection, const half_edge& he1, const half_edge& he2,
- bool projected = false, bool round_closest = false) {
- long double y_high, dx1, dy1, dx2, dy2, x11, x21, y11, y21, x_num, y_num, x_den, y_den, x, y;
- typedef rectangle_data<Unit> Rectangle;
- Rectangle rect1, rect2;
- set_points(rect1, he1.first, he1.second);
- set_points(rect2, he2.first, he2.second);
- if(!projected && !::boost::polygon::intersects(rect1, rect2, true)) return false;
- if(is_vertical(he1)) {
- if(is_vertical(he2)) return false;
- y_high = evalAtXforYlazy(he1.first.get(HORIZONTAL), he2.first, he2.second);
- Unit y_local = (Unit)y_high;
- if(y_high < y_local) --y_local;
- if(projected || contains(rect1.get(VERTICAL), y_local, true)) {
- intersection = Point(he1.first.get(HORIZONTAL), y_local);
- return true;
- } else {
- return false;
- }
- } else if(is_vertical(he2)) {
- y_high = evalAtXforYlazy(he2.first.get(HORIZONTAL), he1.first, he1.second);
- Unit y_local = (Unit)y_high;
- if(y_high < y_local) --y_local;
- if(projected || contains(rect2.get(VERTICAL), y_local, true)) {
- intersection = Point(he2.first.get(HORIZONTAL), y_local);
- return true;
- } else {
- return false;
- }
- }
- //the bounding boxes of the two line segments intersect, so we check closer to find the intersection point
- dy2 = (he2.second.get(VERTICAL)) -
- (he2.first.get(VERTICAL));
- dy1 = (he1.second.get(VERTICAL)) -
- (he1.first.get(VERTICAL));
- dx2 = (he2.second.get(HORIZONTAL)) -
- (he2.first.get(HORIZONTAL));
- dx1 = (he1.second.get(HORIZONTAL)) -
- (he1.first.get(HORIZONTAL));
- if(equal_slope_hp(dx1, dy1, dx2, dy2)) return false;
- //the line segments have different slopes
- //we can assume that the line segments are not vertical because such an intersection is handled elsewhere
- x11 = (he1.first.get(HORIZONTAL));
- x21 = (he2.first.get(HORIZONTAL));
- y11 = (he1.first.get(VERTICAL));
- y21 = (he2.first.get(VERTICAL));
- //Unit exp_x = ((at)x11 * (at)dy1 * (at)dx2 - (at)x21 * (at)dy2 * (at)dx1 + (at)y21 * (at)dx1 * (at)dx2 - (at)y11 * (at)dx1 * (at)dx2) / ((at)dy1 * (at)dx2 - (at)dy2 * (at)dx1);
- //Unit exp_y = ((at)y11 * (at)dx1 * (at)dy2 - (at)y21 * (at)dx2 * (at)dy1 + (at)x21 * (at)dy1 * (at)dy2 - (at)x11 * (at)dy1 * (at)dy2) / ((at)dx1 * (at)dy2 - (at)dx2 * (at)dy1);
- x_num = (x11 * dy1 * dx2 - x21 * dy2 * dx1 + y21 * dx1 * dx2 - y11 * dx1 * dx2);
- x_den = (dy1 * dx2 - dy2 * dx1);
- y_num = (y11 * dx1 * dy2 - y21 * dx2 * dy1 + x21 * dy1 * dy2 - x11 * dy1 * dy2);
- y_den = (dx1 * dy2 - dx2 * dy1);
- x = x_num / x_den;
- y = y_num / y_den;
- //std::cout << "cross1 " << dy1 << " " << dx2 << " " << dy1 * dx2 << "\n";
- //std::cout << "cross2 " << dy2 << " " << dx1 << " " << dy2 * dx1 << "\n";
- //Unit exp_x = compute_x_intercept<at>(x11, x21, y11, y21, dy1, dy2, dx1, dx2);
- //Unit exp_y = compute_x_intercept<at>(y11, y21, x11, x21, dx1, dx2, dy1, dy2);
- if(round_closest) {
- x = x + 0.5;
- y = y + 0.5;
- }
- Unit x_unit = (Unit)(x);
- Unit y_unit = (Unit)(y);
- //truncate downward if it went up due to negative number
- if(x < x_unit) --x_unit;
- if(y < y_unit) --y_unit;
- if(is_horizontal(he1))
- y_unit = he1.first.y();
- if(is_horizontal(he2))
- y_unit = he2.first.y();
- //if(x != exp_x || y != exp_y)
- // std::cout << exp_x << " " << exp_y << " " << x << " " << y << "\n";
- //Unit y1 = evalAtXforY(exp_x, he1.first, he1.second);
- //Unit y2 = evalAtXforY(exp_x, he2.first, he2.second);
- //std::cout << exp_x << " " << exp_y << " " << y1 << " " << y2 << "\n";
- Point result(x_unit, y_unit);
- if(!projected && !contains(rect1, result, true)) return false;
- if(!projected && !contains(rect2, result, true)) return false;
- if(projected) {
- rectangle_data<long double> inf_rect(-(long double)(std::numeric_limits<Unit>::max)(),
- -(long double) (std::numeric_limits<Unit>::max)(),
- (long double)(std::numeric_limits<Unit>::max)(),
- (long double) (std::numeric_limits<Unit>::max)() );
- if(contains(inf_rect, point_data<long double>(x, y), true)) {
- intersection = result;
- return true;
- } else
- return false;
- }
- intersection = result;
- return true;
- }
- inline bool compute_intersection(Point& intersection, const half_edge& he1, const half_edge& he2,
- bool projected = false, bool round_closest = false) {
- if(!projected && !intersects(he1, he2))
- return false;
- bool lazy_success = compute_lazy_intersection(intersection, he1, he2, projected);
- if(!projected) {
- if(lazy_success) {
- if(intersects_grid(intersection, he1) &&
- intersects_grid(intersection, he2))
- return true;
- }
- } else {
- return lazy_success;
- }
- return compute_exact_intersection(intersection, he1, he2, projected, round_closest);
- }
- inline bool compute_exact_intersection(Point& intersection, const half_edge& he1, const half_edge& he2,
- bool projected = false, bool round_closest = false) {
- if(!projected && !intersects(he1, he2))
- return false;
- typedef rectangle_data<Unit> Rectangle;
- Rectangle rect1, rect2;
- set_points(rect1, he1.first, he1.second);
- set_points(rect2, he2.first, he2.second);
- if(!::boost::polygon::intersects(rect1, rect2, true)) return false;
- if(is_vertical(he1)) {
- if(is_vertical(he2)) return false;
- y_high = evalAtXforY(he1.first.get(HORIZONTAL), he2.first, he2.second);
- Unit y = convert_high_precision_type<Unit>(y_high);
- if(y_high < (high_precision)y) --y;
- if(contains(rect1.get(VERTICAL), y, true)) {
- intersection = Point(he1.first.get(HORIZONTAL), y);
- return true;
- } else {
- return false;
- }
- } else if(is_vertical(he2)) {
- y_high = evalAtXforY(he2.first.get(HORIZONTAL), he1.first, he1.second);
- Unit y = convert_high_precision_type<Unit>(y_high);
- if(y_high < (high_precision)y) --y;
- if(contains(rect2.get(VERTICAL), y, true)) {
- intersection = Point(he2.first.get(HORIZONTAL), y);
- return true;
- } else {
- return false;
- }
- }
- //the bounding boxes of the two line segments intersect, so we check closer to find the intersection point
- dy2 = (high_precision)(he2.second.get(VERTICAL)) -
- (high_precision)(he2.first.get(VERTICAL));
- dy1 = (high_precision)(he1.second.get(VERTICAL)) -
- (high_precision)(he1.first.get(VERTICAL));
- dx2 = (high_precision)(he2.second.get(HORIZONTAL)) -
- (high_precision)(he2.first.get(HORIZONTAL));
- dx1 = (high_precision)(he1.second.get(HORIZONTAL)) -
- (high_precision)(he1.first.get(HORIZONTAL));
- if(equal_slope_hp(dx1, dy1, dx2, dy2)) return false;
- //the line segments have different slopes
- //we can assume that the line segments are not vertical because such an intersection is handled elsewhere
- x11 = (high_precision)(he1.first.get(HORIZONTAL));
- x21 = (high_precision)(he2.first.get(HORIZONTAL));
- y11 = (high_precision)(he1.first.get(VERTICAL));
- y21 = (high_precision)(he2.first.get(VERTICAL));
- //Unit exp_x = ((at)x11 * (at)dy1 * (at)dx2 - (at)x21 * (at)dy2 * (at)dx1 + (at)y21 * (at)dx1 * (at)dx2 - (at)y11 * (at)dx1 * (at)dx2) / ((at)dy1 * (at)dx2 - (at)dy2 * (at)dx1);
- //Unit exp_y = ((at)y11 * (at)dx1 * (at)dy2 - (at)y21 * (at)dx2 * (at)dy1 + (at)x21 * (at)dy1 * (at)dy2 - (at)x11 * (at)dy1 * (at)dy2) / ((at)dx1 * (at)dy2 - (at)dx2 * (at)dy1);
- x_num = (x11 * dy1 * dx2 - x21 * dy2 * dx1 + y21 * dx1 * dx2 - y11 * dx1 * dx2);
- x_den = (dy1 * dx2 - dy2 * dx1);
- y_num = (y11 * dx1 * dy2 - y21 * dx2 * dy1 + x21 * dy1 * dy2 - x11 * dy1 * dy2);
- y_den = (dx1 * dy2 - dx2 * dy1);
- x = x_num / x_den;
- y = y_num / y_den;
- //std::cout << x << " " << y << "\n";
- //std::cout << "cross1 " << dy1 << " " << dx2 << " " << dy1 * dx2 << "\n";
- //std::cout << "cross2 " << dy2 << " " << dx1 << " " << dy2 * dx1 << "\n";
- //Unit exp_x = compute_x_intercept<at>(x11, x21, y11, y21, dy1, dy2, dx1, dx2);
- //Unit exp_y = compute_x_intercept<at>(y11, y21, x11, x21, dx1, dx2, dy1, dy2);
- if(round_closest) {
- x = x + (high_precision)0.5;
- y = y + (high_precision)0.5;
- }
- Unit x_unit = convert_high_precision_type<Unit>(x);
- Unit y_unit = convert_high_precision_type<Unit>(y);
- //truncate downward if it went up due to negative number
- if(x < (high_precision)x_unit) --x_unit;
- if(y < (high_precision)y_unit) --y_unit;
- if(is_horizontal(he1))
- y_unit = he1.first.y();
- if(is_horizontal(he2))
- y_unit = he2.first.y();
- //if(x != exp_x || y != exp_y)
- // std::cout << exp_x << " " << exp_y << " " << x << " " << y << "\n";
- //Unit y1 = evalAtXforY(exp_x, he1.first, he1.second);
- //Unit y2 = evalAtXforY(exp_x, he2.first, he2.second);
- //std::cout << exp_x << " " << exp_y << " " << y1 << " " << y2 << "\n";
- Point result(x_unit, y_unit);
- if(!contains(rect1, result, true)) return false;
- if(!contains(rect2, result, true)) return false;
- if(projected) {
- high_precision b1 = (high_precision) (std::numeric_limits<Unit>::min)();
- high_precision b2 = (high_precision) (std::numeric_limits<Unit>::max)();
- if(x > b2 || y > b2 || x < b1 || y < b1)
- return false;
- }
- intersection = result;
- return true;
- }
- };
- static inline bool compute_intersection(Point& intersection, const half_edge& he1, const half_edge& he2) {
- typedef typename high_precision_type<Unit>::type high_precision;
- typedef rectangle_data<Unit> Rectangle;
- Rectangle rect1, rect2;
- set_points(rect1, he1.first, he1.second);
- set_points(rect2, he2.first, he2.second);
- if(!::boost::polygon::intersects(rect1, rect2, true)) return false;
- if(is_vertical(he1)) {
- if(is_vertical(he2)) return false;
- high_precision y_high = evalAtXforY(he1.first.get(HORIZONTAL), he2.first, he2.second);
- Unit y = convert_high_precision_type<Unit>(y_high);
- if(y_high < (high_precision)y) --y;
- if(contains(rect1.get(VERTICAL), y, true)) {
- intersection = Point(he1.first.get(HORIZONTAL), y);
- return true;
- } else {
- return false;
- }
- } else if(is_vertical(he2)) {
- high_precision y_high = evalAtXforY(he2.first.get(HORIZONTAL), he1.first, he1.second);
- Unit y = convert_high_precision_type<Unit>(y_high);
- if(y_high < (high_precision)y) --y;
- if(contains(rect2.get(VERTICAL), y, true)) {
- intersection = Point(he2.first.get(HORIZONTAL), y);
- return true;
- } else {
- return false;
- }
- }
- //the bounding boxes of the two line segments intersect, so we check closer to find the intersection point
- high_precision dy2 = (high_precision)(he2.second.get(VERTICAL)) -
- (high_precision)(he2.first.get(VERTICAL));
- high_precision dy1 = (high_precision)(he1.second.get(VERTICAL)) -
- (high_precision)(he1.first.get(VERTICAL));
- high_precision dx2 = (high_precision)(he2.second.get(HORIZONTAL)) -
- (high_precision)(he2.first.get(HORIZONTAL));
- high_precision dx1 = (high_precision)(he1.second.get(HORIZONTAL)) -
- (high_precision)(he1.first.get(HORIZONTAL));
- if(equal_slope_hp(dx1, dy1, dx2, dy2)) return false;
- //the line segments have different slopes
- //we can assume that the line segments are not vertical because such an intersection is handled elsewhere
- high_precision x11 = (high_precision)(he1.first.get(HORIZONTAL));
- high_precision x21 = (high_precision)(he2.first.get(HORIZONTAL));
- high_precision y11 = (high_precision)(he1.first.get(VERTICAL));
- high_precision y21 = (high_precision)(he2.first.get(VERTICAL));
- //Unit exp_x = ((at)x11 * (at)dy1 * (at)dx2 - (at)x21 * (at)dy2 * (at)dx1 + (at)y21 * (at)dx1 * (at)dx2 - (at)y11 * (at)dx1 * (at)dx2) / ((at)dy1 * (at)dx2 - (at)dy2 * (at)dx1);
- //Unit exp_y = ((at)y11 * (at)dx1 * (at)dy2 - (at)y21 * (at)dx2 * (at)dy1 + (at)x21 * (at)dy1 * (at)dy2 - (at)x11 * (at)dy1 * (at)dy2) / ((at)dx1 * (at)dy2 - (at)dx2 * (at)dy1);
- high_precision x_num = (x11 * dy1 * dx2 - x21 * dy2 * dx1 + y21 * dx1 * dx2 - y11 * dx1 * dx2);
- high_precision x_den = (dy1 * dx2 - dy2 * dx1);
- high_precision y_num = (y11 * dx1 * dy2 - y21 * dx2 * dy1 + x21 * dy1 * dy2 - x11 * dy1 * dy2);
- high_precision y_den = (dx1 * dy2 - dx2 * dy1);
- high_precision x = x_num / x_den;
- high_precision y = y_num / y_den;
- //std::cout << "cross1 " << dy1 << " " << dx2 << " " << dy1 * dx2 << "\n";
- //std::cout << "cross2 " << dy2 << " " << dx1 << " " << dy2 * dx1 << "\n";
- //Unit exp_x = compute_x_intercept<at>(x11, x21, y11, y21, dy1, dy2, dx1, dx2);
- //Unit exp_y = compute_x_intercept<at>(y11, y21, x11, x21, dx1, dx2, dy1, dy2);
- Unit x_unit = convert_high_precision_type<Unit>(x);
- Unit y_unit = convert_high_precision_type<Unit>(y);
- //truncate downward if it went up due to negative number
- if(x < (high_precision)x_unit) --x_unit;
- if(y < (high_precision)y_unit) --y_unit;
- if(is_horizontal(he1))
- y_unit = he1.first.y();
- if(is_horizontal(he2))
- y_unit = he2.first.y();
- //if(x != exp_x || y != exp_y)
- // std::cout << exp_x << " " << exp_y << " " << x << " " << y << "\n";
- //Unit y1 = evalAtXforY(exp_x, he1.first, he1.second);
- //Unit y2 = evalAtXforY(exp_x, he2.first, he2.second);
- //std::cout << exp_x << " " << exp_y << " " << y1 << " " << y2 << "\n";
- Point result(x_unit, y_unit);
- if(!contains(rect1, result, true)) return false;
- if(!contains(rect2, result, true)) return false;
- intersection = result;
- return true;
- }
- static inline bool intersects(const half_edge& he1, const half_edge& he2) {
- typedef rectangle_data<Unit> Rectangle;
- Rectangle rect1, rect2;
- set_points(rect1, he1.first, he1.second);
- set_points(rect2, he2.first, he2.second);
- if(::boost::polygon::intersects(rect1, rect2, false)) {
- if(he1.first == he2.first) {
- if(he1.second != he2.second && equal_slope(he1.first.get(HORIZONTAL), he1.first.get(VERTICAL),
- he1.second, he2.second)) {
- return true;
- } else {
- return false;
- }
- }
- if(he1.first == he2.second) {
- if(he1.second != he2.first && equal_slope(he1.first.get(HORIZONTAL), he1.first.get(VERTICAL),
- he1.second, he2.first)) {
- return true;
- } else {
- return false;
- }
- }
- if(he1.second == he2.first) {
- if(he1.first != he2.second && equal_slope(he1.second.get(HORIZONTAL), he1.second.get(VERTICAL),
- he1.first, he2.second)) {
- return true;
- } else {
- return false;
- }
- }
- if(he1.second == he2.second) {
- if(he1.first != he2.first && equal_slope(he1.second.get(HORIZONTAL), he1.second.get(VERTICAL),
- he1.first, he2.first)) {
- return true;
- } else {
- return false;
- }
- }
- int oab1 = on_above_or_below(he1.first, he2);
- if(oab1 == 0 && between(he1.first, he2.first, he2.second)) return true;
- int oab2 = on_above_or_below(he1.second, he2);
- if(oab2 == 0 && between(he1.second, he2.first, he2.second)) return true;
- if(oab1 == oab2 && oab1 != 0) return false; //both points of he1 are on same side of he2
- int oab3 = on_above_or_below(he2.first, he1);
- if(oab3 == 0 && between(he2.first, he1.first, he1.second)) return true;
- int oab4 = on_above_or_below(he2.second, he1);
- if(oab4 == 0 && between(he2.second, he1.first, he1.second)) return true;
- if(oab3 == oab4) return false; //both points of he2 are on same side of he1
- return true; //they must cross
- }
- if(is_vertical(he1) && is_vertical(he2) && he1.first.get(HORIZONTAL) == he2.first.get(HORIZONTAL))
- return ::boost::polygon::intersects(rect1.get(VERTICAL), rect2.get(VERTICAL), false) &&
- rect1.get(VERTICAL) != rect2.get(VERTICAL);
- if(is_horizontal(he1) && is_horizontal(he2) && he1.first.get(VERTICAL) == he2.first.get(VERTICAL))
- return ::boost::polygon::intersects(rect1.get(HORIZONTAL), rect2.get(HORIZONTAL), false) &&
- rect1.get(HORIZONTAL) != rect2.get(HORIZONTAL);
- return false;
- }
- class vertex_half_edge {
- public:
- typedef typename high_precision_type<Unit>::type high_precision;
- Point pt;
- Point other_pt; // 1, 0 or -1
- int count; //dxdydTheta
- inline vertex_half_edge() : pt(), other_pt(), count() {}
- inline vertex_half_edge(const Point& point, const Point& other_point, int countIn) : pt(point), other_pt(other_point), count(countIn) {}
- inline vertex_half_edge(const vertex_half_edge& vertex) : pt(vertex.pt), other_pt(vertex.other_pt), count(vertex.count) {}
- inline vertex_half_edge& operator=(const vertex_half_edge& vertex){
- pt = vertex.pt; other_pt = vertex.other_pt; count = vertex.count; return *this; }
- inline bool operator==(const vertex_half_edge& vertex) const {
- return pt == vertex.pt && other_pt == vertex.other_pt && count == vertex.count; }
- inline bool operator!=(const vertex_half_edge& vertex) const { return !((*this) == vertex); }
- inline bool operator<(const vertex_half_edge& vertex) const {
- if(pt.get(HORIZONTAL) < vertex.pt.get(HORIZONTAL)) return true;
- if(pt.get(HORIZONTAL) == vertex.pt.get(HORIZONTAL)) {
- if(pt.get(VERTICAL) < vertex.pt.get(VERTICAL)) return true;
- if(pt.get(VERTICAL) == vertex.pt.get(VERTICAL)) { return less_slope(pt.get(HORIZONTAL), pt.get(VERTICAL),
- other_pt, vertex.other_pt);
- }
- }
- return false;
- }
- inline bool operator>(const vertex_half_edge& vertex) const { return vertex < (*this); }
- inline bool operator<=(const vertex_half_edge& vertex) const { return !((*this) > vertex); }
- inline bool operator>=(const vertex_half_edge& vertex) const { return !((*this) < vertex); }
- inline high_precision evalAtX(Unit xIn) const { return evalAtXforYlazy(xIn, pt, other_pt); }
- inline bool is_vertical() const {
- return pt.get(HORIZONTAL) == other_pt.get(HORIZONTAL);
- }
- inline bool is_begin() const {
- return pt.get(HORIZONTAL) < other_pt.get(HORIZONTAL) ||
- (pt.get(HORIZONTAL) == other_pt.get(HORIZONTAL) &&
- (pt.get(VERTICAL) < other_pt.get(VERTICAL)));
- }
- };
- //when scanning Vertex45 for polygon formation we need a scanline comparator functor
- class less_vertex_half_edge {
- private:
- Unit *x_; //x value at which to apply comparison
- int *justBefore_;
- public:
- typedef vertex_half_edge first_argument_type;
- typedef vertex_half_edge second_argument_type;
- typedef bool result_type;
- inline less_vertex_half_edge() : x_(0), justBefore_(0) {}
- inline less_vertex_half_edge(Unit *x, int *justBefore) : x_(x), justBefore_(justBefore) {}
- inline less_vertex_half_edge(const less_vertex_half_edge& that) : x_(that.x_), justBefore_(that.justBefore_) {}
- inline less_vertex_half_edge& operator=(const less_vertex_half_edge& that) { x_ = that.x_; justBefore_ = that.justBefore_; return *this; }
- inline bool operator () (const vertex_half_edge& elm1, const vertex_half_edge& elm2) const {
- if((std::max)(elm1.pt.y(), elm1.other_pt.y()) < (std::min)(elm2.pt.y(), elm2.other_pt.y()))
- return true;
- if((std::min)(elm1.pt.y(), elm1.other_pt.y()) > (std::max)(elm2.pt.y(), elm2.other_pt.y()))
- return false;
- //check if either x of elem1 is equal to x_
- Unit localx = *x_;
- Unit elm1y = 0;
- bool elm1_at_x = false;
- if(localx == elm1.pt.get(HORIZONTAL)) {
- elm1_at_x = true;
- elm1y = elm1.pt.get(VERTICAL);
- } else if(localx == elm1.other_pt.get(HORIZONTAL)) {
- elm1_at_x = true;
- elm1y = elm1.other_pt.get(VERTICAL);
- }
- Unit elm2y = 0;
- bool elm2_at_x = false;
- if(localx == elm2.pt.get(HORIZONTAL)) {
- elm2_at_x = true;
- elm2y = elm2.pt.get(VERTICAL);
- } else if(localx == elm2.other_pt.get(HORIZONTAL)) {
- elm2_at_x = true;
- elm2y = elm2.other_pt.get(VERTICAL);
- }
- bool retval = false;
- if(!(elm1_at_x && elm2_at_x)) {
- //at least one of the segments doesn't have an end point a the current x
- //-1 below, 1 above
- int pt1_oab = on_above_or_below(elm1.pt, half_edge(elm2.pt, elm2.other_pt));
- int pt2_oab = on_above_or_below(elm1.other_pt, half_edge(elm2.pt, elm2.other_pt));
- if(pt1_oab == pt2_oab) {
- if(pt1_oab == -1)
- retval = true; //pt1 is below elm2 so elm1 is below elm2
- } else {
- //the segments can't cross so elm2 is on whatever side of elm1 that one of its ends is
- int pt3_oab = on_above_or_below(elm2.pt, half_edge(elm1.pt, elm1.other_pt));
- if(pt3_oab == 1)
- retval = true; //elm1's point is above elm1
- }
- } else {
- if(elm1y < elm2y) {
- retval = true;
- } else if(elm1y == elm2y) {
- if(elm1.pt == elm2.pt && elm1.other_pt == elm2.other_pt)
- return false;
- retval = less_slope(elm1.other_pt.get(HORIZONTAL) - elm1.pt.get(HORIZONTAL),
- elm1.other_pt.get(VERTICAL) - elm1.pt.get(VERTICAL),
- elm2.other_pt.get(HORIZONTAL) - elm2.pt.get(HORIZONTAL),
- elm2.other_pt.get(VERTICAL) - elm2.pt.get(VERTICAL));
- retval = ((*justBefore_) != 0) ^ retval;
- }
- }
- return retval;
- }
- };
- };
- template <typename Unit>
- class polygon_arbitrary_formation : public scanline_base<Unit> {
- public:
- typedef typename scanline_base<Unit>::Point Point;
- typedef typename scanline_base<Unit>::half_edge half_edge;
- typedef typename scanline_base<Unit>::vertex_half_edge vertex_half_edge;
- typedef typename scanline_base<Unit>::less_vertex_half_edge less_vertex_half_edge;
- class poly_line_arbitrary {
- public:
- typedef typename std::list<Point>::const_iterator iterator;
- // default constructor of point does not initialize x and y
- inline poly_line_arbitrary() : points() {} //do nothing default constructor
- // initialize a polygon from x,y values, it is assumed that the first is an x
- // and that the input is a well behaved polygon
- template<class iT>
- inline poly_line_arbitrary& set(iT inputBegin, iT inputEnd) {
- points.clear(); //just in case there was some old data there
- while(inputBegin != inputEnd) {
- points.insert(points.end(), *inputBegin);
- ++inputBegin;
- }
- return *this;
- }
- // copy constructor (since we have dynamic memory)
- inline poly_line_arbitrary(const poly_line_arbitrary& that) : points(that.points) {}
- // assignment operator (since we have dynamic memory do a deep copy)
- inline poly_line_arbitrary& operator=(const poly_line_arbitrary& that) {
- points = that.points;
- return *this;
- }
- // get begin iterator, returns a pointer to a const Unit
- inline iterator begin() const { return points.begin(); }
- // get end iterator, returns a pointer to a const Unit
- inline iterator end() const { return points.end(); }
- inline std::size_t size() const { return points.size(); }
- //public data member
- std::list<Point> points;
- };
- class active_tail_arbitrary {
- protected:
- //data
- poly_line_arbitrary* tailp_;
- active_tail_arbitrary *otherTailp_;
- std::list<active_tail_arbitrary*> holesList_;
- bool head_;
- public:
- /**
- * @brief iterator over coordinates of the figure
- */
- typedef typename poly_line_arbitrary::iterator iterator;
- /**
- * @brief iterator over holes contained within the figure
- */
- typedef typename std::list<active_tail_arbitrary*>::const_iterator iteratorHoles;
- //default constructor
- inline active_tail_arbitrary() : tailp_(), otherTailp_(), holesList_(), head_() {}
- //constructor
- inline active_tail_arbitrary(const vertex_half_edge& vertex, active_tail_arbitrary* otherTailp = 0) : tailp_(), otherTailp_(), holesList_(), head_() {
- tailp_ = new poly_line_arbitrary;
- tailp_->points.push_back(vertex.pt);
- //bool headArray[4] = {false, true, true, true};
- bool inverted = vertex.count == -1;
- head_ = (!vertex.is_vertical) ^ inverted;
- otherTailp_ = otherTailp;
- }
- inline active_tail_arbitrary(Point point, active_tail_arbitrary* otherTailp, bool head = true) :
- tailp_(), otherTailp_(), holesList_(), head_() {
- tailp_ = new poly_line_arbitrary;
- tailp_->points.push_back(point);
- head_ = head;
- otherTailp_ = otherTailp;
- }
- inline active_tail_arbitrary(active_tail_arbitrary* otherTailp) :
- tailp_(), otherTailp_(), holesList_(), head_() {
- tailp_ = otherTailp->tailp_;
- otherTailp_ = otherTailp;
- }
- //copy constructor
- inline active_tail_arbitrary(const active_tail_arbitrary& that) :
- tailp_(), otherTailp_(), holesList_(), head_() { (*this) = that; }
- //destructor
- inline ~active_tail_arbitrary() {
- destroyContents();
- }
- //assignment operator
- inline active_tail_arbitrary& operator=(const active_tail_arbitrary& that) {
- tailp_ = new poly_line_arbitrary(*(that.tailp_));
- head_ = that.head_;
- otherTailp_ = that.otherTailp_;
- holesList_ = that.holesList_;
- return *this;
- }
- //equivalence operator
- inline bool operator==(const active_tail_arbitrary& b) const {
- return tailp_ == b.tailp_ && head_ == b.head_;
- }
- /**
- * @brief get the pointer to the polyline that this is an active tail of
- */
- inline poly_line_arbitrary* getTail() const { return tailp_; }
- /**
- * @brief get the pointer to the polyline at the other end of the chain
- */
- inline poly_line_arbitrary* getOtherTail() const { return otherTailp_->tailp_; }
- /**
- * @brief get the pointer to the activetail at the other end of the chain
- */
- inline active_tail_arbitrary* getOtherActiveTail() const { return otherTailp_; }
- /**
- * @brief test if another active tail is the other end of the chain
- */
- inline bool isOtherTail(const active_tail_arbitrary& b) const { return &b == otherTailp_; }
- /**
- * @brief update this end of chain pointer to new polyline
- */
- inline active_tail_arbitrary& updateTail(poly_line_arbitrary* newTail) { tailp_ = newTail; return *this; }
- inline bool join(active_tail_arbitrary* tail) {
- if(tail == otherTailp_) {
- //std::cout << "joining to other tail!\n";
- return false;
- }
- if(tail->head_ == head_) {
- //std::cout << "joining head to head!\n";
- return false;
- }
- if(!tailp_) {
- //std::cout << "joining empty tail!\n";
- return false;
- }
- if(!(otherTailp_->head_)) {
- otherTailp_->copyHoles(*tail);
- otherTailp_->copyHoles(*this);
- } else {
- tail->otherTailp_->copyHoles(*this);
- tail->otherTailp_->copyHoles(*tail);
- }
- poly_line_arbitrary* tail1 = tailp_;
- poly_line_arbitrary* tail2 = tail->tailp_;
- if(head_) std::swap(tail1, tail2);
- typename std::list<point_data<Unit> >::reverse_iterator riter = tail1->points.rbegin();
- typename std::list<point_data<Unit> >::iterator iter = tail2->points.begin();
- if(*riter == *iter) {
- tail1->points.pop_back(); //remove duplicate point
- }
- tail1->points.splice(tail1->points.end(), tail2->points);
- delete tail2;
- otherTailp_->tailp_ = tail1;
- tail->otherTailp_->tailp_ = tail1;
- otherTailp_->otherTailp_ = tail->otherTailp_;
- tail->otherTailp_->otherTailp_ = otherTailp_;
- tailp_ = 0;
- tail->tailp_ = 0;
- tail->otherTailp_ = 0;
- otherTailp_ = 0;
- return true;
- }
- /**
- * @brief associate a hole to this active tail by the specified policy
- */
- inline active_tail_arbitrary* addHole(active_tail_arbitrary* hole) {
- holesList_.push_back(hole);
- copyHoles(*hole);
- copyHoles(*(hole->otherTailp_));
- return this;
- }
- /**
- * @brief get the list of holes
- */
- inline const std::list<active_tail_arbitrary*>& getHoles() const { return holesList_; }
- /**
- * @brief copy holes from that to this
- */
- inline void copyHoles(active_tail_arbitrary& that) { holesList_.splice(holesList_.end(), that.holesList_); }
- /**
- * @brief find out if solid to right
- */
- inline bool solidToRight() const { return !head_; }
- inline bool solidToLeft() const { return head_; }
- /**
- * @brief get vertex
- */
- inline Point getPoint() const {
- if(head_) return tailp_->points.front();
- return tailp_->points.back();
- }
- /**
- * @brief add a coordinate to the polygon at this active tail end, properly handle degenerate edges by removing redundant coordinate
- */
- inline void pushPoint(Point point) {
- if(head_) {
- //if(tailp_->points.size() < 2) {
- // tailp_->points.push_front(point);
- // return;
- //}
- typename std::list<Point>::iterator iter = tailp_->points.begin();
- if(iter == tailp_->points.end()) {
- tailp_->points.push_front(point);
- return;
- }
- ++iter;
- if(iter == tailp_->points.end()) {
- tailp_->points.push_front(point);
- return;
- }
- --iter;
- if(*iter != point) {
- tailp_->points.push_front(point);
- }
- return;
- }
- //if(tailp_->points.size() < 2) {
- // tailp_->points.push_back(point);
- // return;
- //}
- typename std::list<Point>::reverse_iterator iter = tailp_->points.rbegin();
- if(iter == tailp_->points.rend()) {
- tailp_->points.push_back(point);
- return;
- }
- ++iter;
- if(iter == tailp_->points.rend()) {
- tailp_->points.push_back(point);
- return;
- }
- --iter;
- if(*iter != point) {
- tailp_->points.push_back(point);
- }
- }
- /**
- * @brief joins the two chains that the two active tail tails are ends of
- * checks for closure of figure and writes out polygons appropriately
- * returns a handle to a hole if one is closed
- */
- template <class cT>
- static inline active_tail_arbitrary* joinChains(Point point, active_tail_arbitrary* at1, active_tail_arbitrary* at2, bool solid,
- cT& output) {
- if(at1->otherTailp_ == at2) {
- //if(at2->otherTailp_ != at1) std::cout << "half closed error\n";
- //we are closing a figure
- at1->pushPoint(point);
- at2->pushPoint(point);
- if(solid) {
- //we are closing a solid figure, write to output
- //std::cout << "test1\n";
- at1->copyHoles(*(at1->otherTailp_));
- typename PolyLineArbitraryByConcept<Unit, typename geometry_concept<typename cT::value_type>::type>::type polyData(at1);
- //poly_line_arbitrary_polygon_data polyData(at1);
- //std::cout << "test2\n";
- //std::cout << poly << "\n";
- //std::cout << "test3\n";
- typedef typename cT::value_type result_type;
- output.push_back(result_type());
- assign(output.back(), polyData);
- //std::cout << "test4\n";
- //std::cout << "delete " << at1->otherTailp_ << "\n";
- //at1->print();
- //at1->otherTailp_->print();
- delete at1->otherTailp_;
- //at1->print();
- //at1->otherTailp_->print();
- //std::cout << "test5\n";
- //std::cout << "delete " << at1 << "\n";
- delete at1;
- //std::cout << "test6\n";
- return 0;
- } else {
- //we are closing a hole, return the tail end active tail of the figure
- return at1;
- }
- }
- //we are not closing a figure
- at1->pushPoint(point);
- at1->join(at2);
- delete at1;
- delete at2;
- return 0;
- }
- inline void destroyContents() {
- if(otherTailp_) {
- //std::cout << "delete p " << tailp_ << "\n";
- if(tailp_) delete tailp_;
- tailp_ = 0;
- otherTailp_->otherTailp_ = 0;
- otherTailp_->tailp_ = 0;
- otherTailp_ = 0;
- }
- for(typename std::list<active_tail_arbitrary*>::iterator itr = holesList_.begin(); itr != holesList_.end(); ++itr) {
- //std::cout << "delete p " << (*itr) << "\n";
- if(*itr) {
- if((*itr)->otherTailp_) {
- delete (*itr)->otherTailp_;
- (*itr)->otherTailp_ = 0;
- }
- delete (*itr);
- }
- (*itr) = 0;
- }
- holesList_.clear();
- }
- inline void print() {
- //std::cout << this << " " << tailp_ << " " << otherTailp_ << " " << holesList_.size() << " " << head_ << "\n";
- }
- static inline std::pair<active_tail_arbitrary*, active_tail_arbitrary*> createActiveTailsAsPair(Point point, bool solid,
- active_tail_arbitrary* phole, bool fractureHoles) {
- active_tail_arbitrary* at1 = 0;
- active_tail_arbitrary* at2 = 0;
- if(phole && fractureHoles) {
- //std::cout << "adding hole\n";
- at1 = phole;
- //assert solid == false, we should be creating a corner with solid below and to the left if there was a hole
- at2 = at1->getOtherActiveTail();
- at2->pushPoint(point);
- at1->pushPoint(point);
- } else {
- at1 = new active_tail_arbitrary(point, at2, solid);
- at2 = new active_tail_arbitrary(at1);
- at1->otherTailp_ = at2;
- at2->head_ = !solid;
- if(phole)
- at2->addHole(phole); //assert fractureHoles == false
- }
- return std::pair<active_tail_arbitrary*, active_tail_arbitrary*>(at1, at2);
- }
- };
- typedef std::vector<std::pair<Point, int> > vertex_arbitrary_count;
- class less_half_edge_count {
- private:
- Point pt_;
- public:
- typedef vertex_half_edge first_argument_type;
- typedef vertex_half_edge second_argument_type;
- typedef bool result_type;
- inline less_half_edge_count() : pt_() {}
- inline less_half_edge_count(Point point) : pt_(point) {}
- inline bool operator () (const std::pair<Point, int>& elm1, const std::pair<Point, int>& elm2) const {
- return scanline_base<Unit>::less_slope(pt_.get(HORIZONTAL), pt_.get(VERTICAL), elm1.first, elm2.first);
- }
- };
- static inline void sort_vertex_arbitrary_count(vertex_arbitrary_count& count, const Point& pt) {
- less_half_edge_count lfec(pt);
- polygon_sort(count.begin(), count.end(), lfec);
- }
- typedef std::vector<std::pair<std::pair<std::pair<Point, Point>, int>, active_tail_arbitrary*> > incoming_count;
- class less_incoming_count {
- private:
- Point pt_;
- public:
- typedef std::pair<std::pair<std::pair<Point, Point>, int>, active_tail_arbitrary*> first_argument_type;
- typedef std::pair<std::pair<std::pair<Point, Point>, int>, active_tail_arbitrary*> second_argument_type;
- typedef bool result_type;
- inline less_incoming_count() : pt_() {}
- inline less_incoming_count(Point point) : pt_(point) {}
- inline bool operator () (const std::pair<std::pair<std::pair<Point, Point>, int>, active_tail_arbitrary*>& elm1,
- const std::pair<std::pair<std::pair<Point, Point>, int>, active_tail_arbitrary*>& elm2) const {
- Unit dx1 = elm1.first.first.first.get(HORIZONTAL) - elm1.first.first.second.get(HORIZONTAL);
- Unit dx2 = elm2.first.first.first.get(HORIZONTAL) - elm2.first.first.second.get(HORIZONTAL);
- Unit dy1 = elm1.first.first.first.get(VERTICAL) - elm1.first.first.second.get(VERTICAL);
- Unit dy2 = elm2.first.first.first.get(VERTICAL) - elm2.first.first.second.get(VERTICAL);
- return scanline_base<Unit>::less_slope(dx1, dy1, dx2, dy2);
- }
- };
- static inline void sort_incoming_count(incoming_count& count, const Point& pt) {
- less_incoming_count lfec(pt);
- polygon_sort(count.begin(), count.end(), lfec);
- }
- static inline void compact_vertex_arbitrary_count(const Point& pt, vertex_arbitrary_count &count) {
- if(count.empty()) return;
- vertex_arbitrary_count tmp;
- tmp.reserve(count.size());
- tmp.push_back(count[0]);
- //merge duplicates
- for(std::size_t i = 1; i < count.size(); ++i) {
- if(!equal_slope(pt.get(HORIZONTAL), pt.get(VERTICAL), tmp[i-1].first, count[i].first)) {
- tmp.push_back(count[i]);
- } else {
- tmp.back().second += count[i].second;
- }
- }
- count.clear();
- count.swap(tmp);
- }
- // inline std::ostream& operator<< (std::ostream& o, const vertex_arbitrary_count& c) {
- // for(unsinged int i = 0; i < c.size(); ++i) {
- // o << c[i].first << " " << c[i].second << " ";
- // }
- // return o;
- // }
- class vertex_arbitrary_compact {
- public:
- Point pt;
- vertex_arbitrary_count count;
- inline vertex_arbitrary_compact() : pt(), count() {}
- inline vertex_arbitrary_compact(const Point& point, const Point& other_point, int countIn) : pt(point), count() {
- count.push_back(std::pair<Point, int>(other_point, countIn));
- }
- inline vertex_arbitrary_compact(const vertex_half_edge& vertex) : pt(vertex.pt), count() {
- count.push_back(std::pair<Point, int>(vertex.other_pt, vertex.count));
- }
- inline vertex_arbitrary_compact(const vertex_arbitrary_compact& vertex) : pt(vertex.pt), count(vertex.count) {}
- inline vertex_arbitrary_compact& operator=(const vertex_arbitrary_compact& vertex){
- pt = vertex.pt; count = vertex.count; return *this; }
- inline bool operator==(const vertex_arbitrary_compact& vertex) const {
- return pt == vertex.pt && count == vertex.count; }
- inline bool operator!=(const vertex_arbitrary_compact& vertex) const { return !((*this) == vertex); }
- inline bool operator<(const vertex_arbitrary_compact& vertex) const {
- if(pt.get(HORIZONTAL) < vertex.pt.get(HORIZONTAL)) return true;
- if(pt.get(HORIZONTAL) == vertex.pt.get(HORIZONTAL)) {
- return pt.get(VERTICAL) < vertex.pt.get(VERTICAL);
- }
- return false;
- }
- inline bool operator>(const vertex_arbitrary_compact& vertex) const { return vertex < (*this); }
- inline bool operator<=(const vertex_arbitrary_compact& vertex) const { return !((*this) > vertex); }
- inline bool operator>=(const vertex_arbitrary_compact& vertex) const { return !((*this) < vertex); }
- inline bool have_vertex_half_edge(int index) const { return count[index]; }
- inline vertex_half_edge operator[](int index) const { return vertex_half_edge(pt, count[index]); }
- };
- // inline std::ostream& operator<< (std::ostream& o, const vertex_arbitrary_compact& c) {
- // o << c.pt << ", " << c.count;
- // return o;
- // }
- protected:
- //definitions
- typedef std::map<vertex_half_edge, active_tail_arbitrary*, less_vertex_half_edge> scanline_data;
- typedef typename scanline_data::iterator iterator;
- typedef typename scanline_data::const_iterator const_iterator;
- //data
- scanline_data scanData_;
- Unit x_;
- int justBefore_;
- int fractureHoles_;
- public:
- inline polygon_arbitrary_formation() :
- scanData_(), x_((std::numeric_limits<Unit>::min)()), justBefore_(false), fractureHoles_(0) {
- less_vertex_half_edge lessElm(&x_, &justBefore_);
- scanData_ = scanline_data(lessElm);
- }
- inline polygon_arbitrary_formation(bool fractureHoles) :
- scanData_(), x_((std::numeric_limits<Unit>::min)()), justBefore_(false), fractureHoles_(fractureHoles) {
- less_vertex_half_edge lessElm(&x_, &justBefore_);
- scanData_ = scanline_data(lessElm);
- }
- inline polygon_arbitrary_formation(const polygon_arbitrary_formation& that) :
- scanData_(), x_((std::numeric_limits<Unit>::min)()), justBefore_(false), fractureHoles_(0) { (*this) = that; }
- inline polygon_arbitrary_formation& operator=(const polygon_arbitrary_formation& that) {
- x_ = that.x_;
- justBefore_ = that.justBefore_;
- fractureHoles_ = that.fractureHoles_;
- less_vertex_half_edge lessElm(&x_, &justBefore_);
- scanData_ = scanline_data(lessElm);
- for(const_iterator itr = that.scanData_.begin(); itr != that.scanData_.end(); ++itr){
- scanData_.insert(scanData_.end(), *itr);
- }
- return *this;
- }
- //cT is an output container of Polygon45 or Polygon45WithHoles
- //iT is an iterator over vertex_half_edge elements
- //inputBegin - inputEnd is a range of sorted iT that represents
- //one or more scanline stops worth of data
- template <class cT, class iT>
- void scan(cT& output, iT inputBegin, iT inputEnd) {
- //std::cout << "1\n";
- while(inputBegin != inputEnd) {
- //std::cout << "2\n";
- x_ = (*inputBegin).pt.get(HORIZONTAL);
- //std::cout << "SCAN FORMATION " << x_ << "\n";
- //std::cout << "x_ = " << x_ << "\n";
- //std::cout << "scan line size: " << scanData_.size() << "\n";
- inputBegin = processEvent_(output, inputBegin, inputEnd);
- }
- //std::cout << "scan line size: " << scanData_.size() << "\n";
- }
- protected:
- //functions
- template <class cT, class cT2>
- inline std::pair<std::pair<Point, int>, active_tail_arbitrary*> processPoint_(cT& output, cT2& elements, Point point,
- incoming_count& counts_from_scanline, vertex_arbitrary_count& incoming_count) {
- //std::cout << "\nAT POINT: " << point << "\n";
- //join any closing solid corners
- std::vector<int> counts;
- std::vector<int> incoming;
- std::vector<active_tail_arbitrary*> tails;
- counts.reserve(counts_from_scanline.size());
- tails.reserve(counts_from_scanline.size());
- incoming.reserve(incoming_count.size());
- for(std::size_t i = 0; i < counts_from_scanline.size(); ++i) {
- counts.push_back(counts_from_scanline[i].first.second);
- tails.push_back(counts_from_scanline[i].second);
- }
- for(std::size_t i = 0; i < incoming_count.size(); ++i) {
- incoming.push_back(incoming_count[i].second);
- if(incoming_count[i].first < point) {
- incoming.back() = 0;
- }
- }
- active_tail_arbitrary* returnValue = 0;
- std::pair<Point, int> returnCount(Point(0, 0), 0);
- int i_size_less_1 = (int)(incoming.size()) -1;
- int c_size_less_1 = (int)(counts.size()) -1;
- int i_size = incoming.size();
- int c_size = counts.size();
- bool have_vertical_tail_from_below = false;
- if(c_size &&
- scanline_base<Unit>::is_vertical(counts_from_scanline.back().first.first)) {
- have_vertical_tail_from_below = true;
- }
- //assert size = size_less_1 + 1
- //std::cout << tails.size() << " " << incoming.size() << " " << counts_from_scanline.size() << " " << incoming_count.size() << "\n";
- // for(std::size_t i = 0; i < counts.size(); ++i) {
- // std::cout << counts_from_scanline[i].first.first.first.get(HORIZONTAL) << ",";
- // std::cout << counts_from_scanline[i].first.first.first.get(VERTICAL) << " ";
- // std::cout << counts_from_scanline[i].first.first.second.get(HORIZONTAL) << ",";
- // std::cout << counts_from_scanline[i].first.first.second.get(VERTICAL) << ":";
- // std::cout << counts_from_scanline[i].first.second << " ";
- // } std::cout << "\n";
- // print(incoming_count);
- {
- for(int i = 0; i < c_size_less_1; ++i) {
- //std::cout << i << "\n";
- if(counts[i] == -1) {
- //std::cout << "fixed i\n";
- for(int j = i + 1; j < c_size; ++j) {
- //std::cout << j << "\n";
- if(counts[j]) {
- if(counts[j] == 1) {
- //std::cout << "case1: " << i << " " << j << "\n";
- //if a figure is closed it will be written out by this function to output
- active_tail_arbitrary::joinChains(point, tails[i], tails[j], true, output);
- counts[i] = 0;
- counts[j] = 0;
- tails[i] = 0;
- tails[j] = 0;
- }
- break;
- }
- }
- }
- }
- }
- //find any pairs of incoming edges that need to create pair for leading solid
- //std::cout << "checking case2\n";
- {
- for(int i = 0; i < i_size_less_1; ++i) {
- //std::cout << i << "\n";
- if(incoming[i] == 1) {
- //std::cout << "fixed i\n";
- for(int j = i + 1; j < i_size; ++j) {
- //std::cout << j << "\n";
- if(incoming[j]) {
- //std::cout << incoming[j] << "\n";
- if(incoming[j] == -1) {
- //std::cout << "case2: " << i << " " << j << "\n";
- //std::cout << "creating active tail pair\n";
- std::pair<active_tail_arbitrary*, active_tail_arbitrary*> tailPair =
- active_tail_arbitrary::createActiveTailsAsPair(point, true, 0, fractureHoles_ != 0);
- //tailPair.first->print();
- //tailPair.second->print();
- if(j == i_size_less_1 && incoming_count[j].first.get(HORIZONTAL) == point.get(HORIZONTAL)) {
- //vertical active tail becomes return value
- returnValue = tailPair.first;
- returnCount.first = point;
- returnCount.second = 1;
- } else {
- //std::cout << "new element " << j-1 << " " << -1 << "\n";
- //std::cout << point << " " << incoming_count[j].first << "\n";
- elements.push_back(std::pair<vertex_half_edge,
- active_tail_arbitrary*>(vertex_half_edge(point,
- incoming_count[j].first, -1), tailPair.first));
- }
- //std::cout << "new element " << i-1 << " " << 1 << "\n";
- //std::cout << point << " " << incoming_count[i].first << "\n";
- elements.push_back(std::pair<vertex_half_edge,
- active_tail_arbitrary*>(vertex_half_edge(point,
- incoming_count[i].first, 1), tailPair.second));
- incoming[i] = 0;
- incoming[j] = 0;
- }
- break;
- }
- }
- }
- }
- }
- //find any active tail that needs to pass through to an incoming edge
- //we expect to find no more than two pass through
- //find pass through with solid on top
- {
- //std::cout << "checking case 3\n";
- for(int i = 0; i < c_size; ++i) {
- //std::cout << i << "\n";
- if(counts[i] != 0) {
- if(counts[i] == 1) {
- //std::cout << "fixed i\n";
- for(int j = i_size_less_1; j >= 0; --j) {
- if(incoming[j] != 0) {
- if(incoming[j] == 1) {
- //std::cout << "case3: " << i << " " << j << "\n";
- //tails[i]->print();
- //pass through solid on top
- tails[i]->pushPoint(point);
- //std::cout << "after push\n";
- if(j == i_size_less_1 && incoming_count[j].first.get(HORIZONTAL) == point.get(HORIZONTAL)) {
- returnValue = tails[i];
- returnCount.first = point;
- returnCount.second = -1;
- } else {
- elements.push_back(std::pair<vertex_half_edge,
- active_tail_arbitrary*>(vertex_half_edge(point,
- incoming_count[j].first, incoming[j]), tails[i]));
- }
- tails[i] = 0;
- counts[i] = 0;
- incoming[j] = 0;
- }
- break;
- }
- }
- }
- break;
- }
- }
- }
- //std::cout << "checking case 4\n";
- //find pass through with solid on bottom
- {
- for(int i = c_size_less_1; i >= 0; --i) {
- //std::cout << "i = " << i << " with count " << counts[i] << "\n";
- if(counts[i] != 0) {
- if(counts[i] == -1) {
- for(int j = 0; j < i_size; ++j) {
- if(incoming[j] != 0) {
- if(incoming[j] == -1) {
- //std::cout << "case4: " << i << " " << j << "\n";
- //pass through solid on bottom
- tails[i]->pushPoint(point);
- if(j == i_size_less_1 && incoming_count[j].first.get(HORIZONTAL) == point.get(HORIZONTAL)) {
- returnValue = tails[i];
- returnCount.first = point;
- returnCount.second = 1;
- } else {
- //std::cout << "new element " << j-1 << " " << incoming[j] << "\n";
- //std::cout << point << " " << incoming_count[j].first << "\n";
- elements.push_back(std::pair<vertex_half_edge,
- active_tail_arbitrary*>(vertex_half_edge(point,
- incoming_count[j].first, incoming[j]), tails[i]));
- }
- tails[i] = 0;
- counts[i] = 0;
- incoming[j] = 0;
- }
- break;
- }
- }
- }
- break;
- }
- }
- }
- //find the end of a hole or the beginning of a hole
- //find end of a hole
- {
- for(int i = 0; i < c_size_less_1; ++i) {
- if(counts[i] != 0) {
- for(int j = i+1; j < c_size; ++j) {
- if(counts[j] != 0) {
- //std::cout << "case5: " << i << " " << j << "\n";
- //we are ending a hole and may potentially close a figure and have to handle the hole
- returnValue = active_tail_arbitrary::joinChains(point, tails[i], tails[j], false, output);
- if(returnValue) returnCount.first = point;
- //std::cout << returnValue << "\n";
- tails[i] = 0;
- tails[j] = 0;
- counts[i] = 0;
- counts[j] = 0;
- break;
- }
- }
- break;
- }
- }
- }
- //find beginning of a hole
- {
- for(int i = 0; i < i_size_less_1; ++i) {
- if(incoming[i] != 0) {
- for(int j = i+1; j < i_size; ++j) {
- if(incoming[j] != 0) {
- //std::cout << "case6: " << i << " " << j << "\n";
- //we are beginning a empty space
- active_tail_arbitrary* holep = 0;
- //if(c_size && counts[c_size_less_1] == 0 &&
- // counts_from_scanline[c_size_less_1].first.first.first.get(HORIZONTAL) == point.get(HORIZONTAL))
- if(have_vertical_tail_from_below) {
- holep = tails[c_size_less_1];
- tails[c_size_less_1] = 0;
- have_vertical_tail_from_below = false;
- }
- std::pair<active_tail_arbitrary*, active_tail_arbitrary*> tailPair =
- active_tail_arbitrary::createActiveTailsAsPair(point, false, holep, fractureHoles_ != 0);
- if(j == i_size_less_1 && incoming_count[j].first.get(HORIZONTAL) == point.get(HORIZONTAL)) {
- //std::cout << "vertical element " << point << "\n";
- returnValue = tailPair.first;
- returnCount.first = point;
- //returnCount = incoming_count[j];
- returnCount.second = -1;
- } else {
- //std::cout << "new element " << j-1 << " " << incoming[j] << "\n";
- //std::cout << point << " " << incoming_count[j].first << "\n";
- elements.push_back(std::pair<vertex_half_edge,
- active_tail_arbitrary*>(vertex_half_edge(point,
- incoming_count[j].first, incoming[j]), tailPair.first));
- }
- //std::cout << "new element " << i-1 << " " << incoming[i] << "\n";
- //std::cout << point << " " << incoming_count[i].first << "\n";
- elements.push_back(std::pair<vertex_half_edge,
- active_tail_arbitrary*>(vertex_half_edge(point,
- incoming_count[i].first, incoming[i]), tailPair.second));
- incoming[i] = 0;
- incoming[j] = 0;
- break;
- }
- }
- break;
- }
- }
- }
- if(have_vertical_tail_from_below) {
- if(tails.back()) {
- tails.back()->pushPoint(point);
- returnValue = tails.back();
- returnCount.first = point;
- returnCount.second = counts.back();
- }
- }
- //assert that tails, counts and incoming are all null
- return std::pair<std::pair<Point, int>, active_tail_arbitrary*>(returnCount, returnValue);
- }
- static inline void print(const vertex_arbitrary_count& count) {
- for(unsigned i = 0; i < count.size(); ++i) {
- //std::cout << count[i].first.get(HORIZONTAL) << ",";
- //std::cout << count[i].first.get(VERTICAL) << ":";
- //std::cout << count[i].second << " ";
- } //std::cout << "\n";
- }
- static inline void print(const scanline_data& data) {
- for(typename scanline_data::const_iterator itr = data.begin(); itr != data.end(); ++itr){
- //std::cout << itr->first.pt << ", " << itr->first.other_pt << "; ";
- } //std::cout << "\n";
- }
- template <class cT, class iT>
- inline iT processEvent_(cT& output, iT inputBegin, iT inputEnd) {
- typedef typename high_precision_type<Unit>::type high_precision;
- //std::cout << "processEvent_\n";
- justBefore_ = true;
- //collect up all elements from the tree that are at the y
- //values of events in the input queue
- //create vector of new elements to add into tree
- active_tail_arbitrary* verticalTail = 0;
- std::pair<Point, int> verticalCount(Point(0, 0), 0);
- iT currentIter = inputBegin;
- std::vector<iterator> elementIters;
- std::vector<std::pair<vertex_half_edge, active_tail_arbitrary*> > elements;
- while(currentIter != inputEnd && currentIter->pt.get(HORIZONTAL) == x_) {
- //std::cout << "loop\n";
- Unit currentY = (*currentIter).pt.get(VERTICAL);
- //std::cout << "current Y " << currentY << "\n";
- //std::cout << "scanline size " << scanData_.size() << "\n";
- //print(scanData_);
- iterator iter = lookUp_(currentY);
- //std::cout << "found element in scanline " << (iter != scanData_.end()) << "\n";
- //int counts[4] = {0, 0, 0, 0};
- incoming_count counts_from_scanline;
- //std::cout << "finding elements in tree\n";
- //if(iter != scanData_.end())
- // std::cout << "first iter y is " << iter->first.evalAtX(x_) << "\n";
- while(iter != scanData_.end() &&
- ((iter->first.pt.x() == x_ && iter->first.pt.y() == currentY) ||
- (iter->first.other_pt.x() == x_ && iter->first.other_pt.y() == currentY))) {
- //iter->first.evalAtX(x_) == (high_precision)currentY) {
- //std::cout << "loop2\n";
- elementIters.push_back(iter);
- counts_from_scanline.push_back(std::pair<std::pair<std::pair<Point, Point>, int>, active_tail_arbitrary*>
- (std::pair<std::pair<Point, Point>, int>(std::pair<Point, Point>(iter->first.pt,
- iter->first.other_pt),
- iter->first.count),
- iter->second));
- ++iter;
- }
- Point currentPoint(x_, currentY);
- //std::cout << "counts_from_scanline size " << counts_from_scanline.size() << "\n";
- sort_incoming_count(counts_from_scanline, currentPoint);
- vertex_arbitrary_count incoming;
- //std::cout << "aggregating\n";
- do {
- //std::cout << "loop3\n";
- const vertex_half_edge& elem = *currentIter;
- incoming.push_back(std::pair<Point, int>(elem.other_pt, elem.count));
- ++currentIter;
- } while(currentIter != inputEnd && currentIter->pt.get(VERTICAL) == currentY &&
- currentIter->pt.get(HORIZONTAL) == x_);
- //print(incoming);
- sort_vertex_arbitrary_count(incoming, currentPoint);
- //std::cout << currentPoint.get(HORIZONTAL) << "," << currentPoint.get(VERTICAL) << "\n";
- //print(incoming);
- //std::cout << "incoming counts from input size " << incoming.size() << "\n";
- //compact_vertex_arbitrary_count(currentPoint, incoming);
- vertex_arbitrary_count tmp;
- tmp.reserve(incoming.size());
- for(std::size_t i = 0; i < incoming.size(); ++i) {
- if(currentPoint < incoming[i].first) {
- tmp.push_back(incoming[i]);
- }
- }
- incoming.swap(tmp);
- //std::cout << "incoming counts from input size " << incoming.size() << "\n";
- //now counts_from_scanline has the data from the left and
- //incoming has the data from the right at this point
- //cancel out any end points
- if(verticalTail) {
- //std::cout << "adding vertical tail to counts from scanline\n";
- //std::cout << -verticalCount.second << "\n";
- counts_from_scanline.push_back(std::pair<std::pair<std::pair<Point, Point>, int>, active_tail_arbitrary*>
- (std::pair<std::pair<Point, Point>, int>(std::pair<Point, Point>(verticalCount.first,
- currentPoint),
- -verticalCount.second),
- verticalTail));
- }
- if(!incoming.empty() && incoming.back().first.get(HORIZONTAL) == x_) {
- //std::cout << "inverted vertical event\n";
- incoming.back().second *= -1;
- }
- //std::cout << "calling processPoint_\n";
- std::pair<std::pair<Point, int>, active_tail_arbitrary*> result = processPoint_(output, elements, Point(x_, currentY), counts_from_scanline, incoming);
- verticalCount = result.first;
- verticalTail = result.second;
- //if(verticalTail) {
- // std::cout << "have vertical tail\n";
- // std::cout << verticalCount.second << "\n";
- //}
- if(verticalTail && !(verticalCount.second)) {
- //we got a hole out of the point we just processed
- //iter is still at the next y element above the current y value in the tree
- //std::cout << "checking whether ot handle hole\n";
- if(currentIter == inputEnd ||
- currentIter->pt.get(HORIZONTAL) != x_ ||
- scanline_base<Unit>::on_above_or_below(currentIter->pt, half_edge(iter->first.pt, iter->first.other_pt)) != -1) {
- //(high_precision)(currentIter->pt.get(VERTICAL)) >= iter->first.evalAtX(x_)) {
- //std::cout << "handle hole here\n";
- if(fractureHoles_) {
- //std::cout << "fracture hole here\n";
- //we need to handle the hole now and not at the next input vertex
- active_tail_arbitrary* at = iter->second;
- high_precision precise_y = iter->first.evalAtX(x_);
- Unit fracture_y = convert_high_precision_type<Unit>(precise_y);
- if(precise_y < fracture_y) --fracture_y;
- Point point(x_, fracture_y);
- verticalTail->getOtherActiveTail()->pushPoint(point);
- iter->second = verticalTail->getOtherActiveTail();
- at->pushPoint(point);
- verticalTail->join(at);
- delete at;
- delete verticalTail;
- verticalTail = 0;
- } else {
- //std::cout << "push hole onto list\n";
- iter->second->addHole(verticalTail);
- verticalTail = 0;
- }
- }
- }
- }
- //std::cout << "erasing\n";
- //erase all elements from the tree
- for(typename std::vector<iterator>::iterator iter = elementIters.begin();
- iter != elementIters.end(); ++iter) {
- //std::cout << "erasing loop\n";
- scanData_.erase(*iter);
- }
- //switch comparison tie breaking policy
- justBefore_ = false;
- //add new elements into tree
- //std::cout << "inserting\n";
- for(typename std::vector<std::pair<vertex_half_edge, active_tail_arbitrary*> >::iterator iter = elements.begin();
- iter != elements.end(); ++iter) {
- //std::cout << "inserting loop\n";
- scanData_.insert(scanData_.end(), *iter);
- }
- //std::cout << "end processEvent\n";
- return currentIter;
- }
- inline iterator lookUp_(Unit y){
- //if just before then we need to look from 1 not -1
- //std::cout << "just before " << justBefore_ << "\n";
- return scanData_.lower_bound(vertex_half_edge(Point(x_, y), Point(x_, y+1), 0));
- }
- public: //test functions
- template <typename stream_type>
- static inline bool testPolygonArbitraryFormationRect(stream_type& stdcout) {
- stdcout << "testing polygon formation\n";
- polygon_arbitrary_formation pf(true);
- std::vector<polygon_data<Unit> > polys;
- std::vector<vertex_half_edge> data;
- data.push_back(vertex_half_edge(Point(0, 0), Point(10, 0), 1));
- data.push_back(vertex_half_edge(Point(0, 0), Point(0, 10), 1));
- data.push_back(vertex_half_edge(Point(0, 10), Point(0, 0), -1));
- data.push_back(vertex_half_edge(Point(0, 10), Point(10, 10), -1));
- data.push_back(vertex_half_edge(Point(10, 0), Point(0, 0), -1));
- data.push_back(vertex_half_edge(Point(10, 0), Point(10, 10), -1));
- data.push_back(vertex_half_edge(Point(10, 10), Point(10, 0), 1));
- data.push_back(vertex_half_edge(Point(10, 10), Point(0, 10), 1));
- polygon_sort(data.begin(), data.end());
- pf.scan(polys, data.begin(), data.end());
- stdcout << "result size: " << polys.size() << "\n";
- for(std::size_t i = 0; i < polys.size(); ++i) {
- stdcout << polys[i] << "\n";
- }
- stdcout << "done testing polygon formation\n";
- return true;
- }
- template <typename stream_type>
- static inline bool testPolygonArbitraryFormationP1(stream_type& stdcout) {
- stdcout << "testing polygon formation P1\n";
- polygon_arbitrary_formation pf(true);
- std::vector<polygon_data<Unit> > polys;
- std::vector<vertex_half_edge> data;
- data.push_back(vertex_half_edge(Point(0, 0), Point(10, 10), 1));
- data.push_back(vertex_half_edge(Point(0, 0), Point(0, 10), 1));
- data.push_back(vertex_half_edge(Point(0, 10), Point(0, 0), -1));
- data.push_back(vertex_half_edge(Point(0, 10), Point(10, 20), -1));
- data.push_back(vertex_half_edge(Point(10, 10), Point(0, 0), -1));
- data.push_back(vertex_half_edge(Point(10, 10), Point(10, 20), -1));
- data.push_back(vertex_half_edge(Point(10, 20), Point(10, 10), 1));
- data.push_back(vertex_half_edge(Point(10, 20), Point(0, 10), 1));
- polygon_sort(data.begin(), data.end());
- pf.scan(polys, data.begin(), data.end());
- stdcout << "result size: " << polys.size() << "\n";
- for(std::size_t i = 0; i < polys.size(); ++i) {
- stdcout << polys[i] << "\n";
- }
- stdcout << "done testing polygon formation\n";
- return true;
- }
- template <typename stream_type>
- static inline bool testPolygonArbitraryFormationP2(stream_type& stdcout) {
- stdcout << "testing polygon formation P2\n";
- polygon_arbitrary_formation pf(true);
- std::vector<polygon_data<Unit> > polys;
- std::vector<vertex_half_edge> data;
- data.push_back(vertex_half_edge(Point(-3, 1), Point(2, -4), 1));
- data.push_back(vertex_half_edge(Point(-3, 1), Point(-2, 2), -1));
- data.push_back(vertex_half_edge(Point(-2, 2), Point(2, 4), -1));
- data.push_back(vertex_half_edge(Point(-2, 2), Point(-3, 1), 1));
- data.push_back(vertex_half_edge(Point(2, -4), Point(-3, 1), -1));
- data.push_back(vertex_half_edge(Point(2, -4), Point(2, 4), -1));
- data.push_back(vertex_half_edge(Point(2, 4), Point(-2, 2), 1));
- data.push_back(vertex_half_edge(Point(2, 4), Point(2, -4), 1));
- polygon_sort(data.begin(), data.end());
- pf.scan(polys, data.begin(), data.end());
- stdcout << "result size: " << polys.size() << "\n";
- for(std::size_t i = 0; i < polys.size(); ++i) {
- stdcout << polys[i] << "\n";
- }
- stdcout << "done testing polygon formation\n";
- return true;
- }
- template <typename stream_type>
- static inline bool testPolygonArbitraryFormationPolys(stream_type& stdcout) {
- stdcout << "testing polygon formation polys\n";
- polygon_arbitrary_formation pf(false);
- std::vector<polygon_with_holes_data<Unit> > polys;
- polygon_arbitrary_formation pf2(true);
- std::vector<polygon_with_holes_data<Unit> > polys2;
- std::vector<vertex_half_edge> data;
- data.push_back(vertex_half_edge(Point(0, 0), Point(100, 1), 1));
- data.push_back(vertex_half_edge(Point(0, 0), Point(1, 100), -1));
- data.push_back(vertex_half_edge(Point(1, 100), Point(0, 0), 1));
- data.push_back(vertex_half_edge(Point(1, 100), Point(101, 101), -1));
- data.push_back(vertex_half_edge(Point(100, 1), Point(0, 0), -1));
- data.push_back(vertex_half_edge(Point(100, 1), Point(101, 101), 1));
- data.push_back(vertex_half_edge(Point(101, 101), Point(100, 1), -1));
- data.push_back(vertex_half_edge(Point(101, 101), Point(1, 100), 1));
- data.push_back(vertex_half_edge(Point(2, 2), Point(10, 2), -1));
- data.push_back(vertex_half_edge(Point(2, 2), Point(2, 10), -1));
- data.push_back(vertex_half_edge(Point(2, 10), Point(2, 2), 1));
- data.push_back(vertex_half_edge(Point(2, 10), Point(10, 10), 1));
- data.push_back(vertex_half_edge(Point(10, 2), Point(2, 2), 1));
- data.push_back(vertex_half_edge(Point(10, 2), Point(10, 10), 1));
- data.push_back(vertex_half_edge(Point(10, 10), Point(10, 2), -1));
- data.push_back(vertex_half_edge(Point(10, 10), Point(2, 10), -1));
- data.push_back(vertex_half_edge(Point(2, 12), Point(10, 12), -1));
- data.push_back(vertex_half_edge(Point(2, 12), Point(2, 22), -1));
- data.push_back(vertex_half_edge(Point(2, 22), Point(2, 12), 1));
- data.push_back(vertex_half_edge(Point(2, 22), Point(10, 22), 1));
- data.push_back(vertex_half_edge(Point(10, 12), Point(2, 12), 1));
- data.push_back(vertex_half_edge(Point(10, 12), Point(10, 22), 1));
- data.push_back(vertex_half_edge(Point(10, 22), Point(10, 12), -1));
- data.push_back(vertex_half_edge(Point(10, 22), Point(2, 22), -1));
- polygon_sort(data.begin(), data.end());
- pf.scan(polys, data.begin(), data.end());
- stdcout << "result size: " << polys.size() << "\n";
- for(std::size_t i = 0; i < polys.size(); ++i) {
- stdcout << polys[i] << "\n";
- }
- pf2.scan(polys2, data.begin(), data.end());
- stdcout << "result size: " << polys2.size() << "\n";
- for(std::size_t i = 0; i < polys2.size(); ++i) {
- stdcout << polys2[i] << "\n";
- }
- stdcout << "done testing polygon formation\n";
- return true;
- }
- template <typename stream_type>
- static inline bool testPolygonArbitraryFormationSelfTouch1(stream_type& stdcout) {
- stdcout << "testing polygon formation self touch 1\n";
- polygon_arbitrary_formation pf(true);
- std::vector<polygon_data<Unit> > polys;
- std::vector<vertex_half_edge> data;
- data.push_back(vertex_half_edge(Point(0, 0), Point(10, 0), 1));
- data.push_back(vertex_half_edge(Point(0, 0), Point(0, 10), 1));
- data.push_back(vertex_half_edge(Point(0, 10), Point(0, 0), -1));
- data.push_back(vertex_half_edge(Point(0, 10), Point(5, 10), -1));
- data.push_back(vertex_half_edge(Point(10, 0), Point(0, 0), -1));
- data.push_back(vertex_half_edge(Point(10, 0), Point(10, 5), -1));
- data.push_back(vertex_half_edge(Point(10, 5), Point(10, 0), 1));
- data.push_back(vertex_half_edge(Point(10, 5), Point(5, 5), 1));
- data.push_back(vertex_half_edge(Point(5, 10), Point(5, 5), 1));
- data.push_back(vertex_half_edge(Point(5, 10), Point(0, 10), 1));
- data.push_back(vertex_half_edge(Point(5, 2), Point(5, 5), -1));
- data.push_back(vertex_half_edge(Point(5, 2), Point(7, 2), -1));
- data.push_back(vertex_half_edge(Point(5, 5), Point(5, 10), -1));
- data.push_back(vertex_half_edge(Point(5, 5), Point(5, 2), 1));
- data.push_back(vertex_half_edge(Point(5, 5), Point(10, 5), -1));
- data.push_back(vertex_half_edge(Point(5, 5), Point(7, 2), 1));
- data.push_back(vertex_half_edge(Point(7, 2), Point(5, 5), -1));
- data.push_back(vertex_half_edge(Point(7, 2), Point(5, 2), 1));
- polygon_sort(data.begin(), data.end());
- pf.scan(polys, data.begin(), data.end());
- stdcout << "result size: " << polys.size() << "\n";
- for(std::size_t i = 0; i < polys.size(); ++i) {
- stdcout << polys[i] << "\n";
- }
- stdcout << "done testing polygon formation\n";
- return true;
- }
- template <typename stream_type>
- static inline bool testPolygonArbitraryFormationSelfTouch2(stream_type& stdcout) {
- stdcout << "testing polygon formation self touch 2\n";
- polygon_arbitrary_formation pf(true);
- std::vector<polygon_data<Unit> > polys;
- std::vector<vertex_half_edge> data;
- data.push_back(vertex_half_edge(Point(0, 0), Point(10, 0), 1));
- data.push_back(vertex_half_edge(Point(0, 0), Point(0, 10), 1));
- data.push_back(vertex_half_edge(Point(0, 10), Point(0, 0), -1));
- data.push_back(vertex_half_edge(Point(0, 10), Point(5, 10), -1));
- data.push_back(vertex_half_edge(Point(10, 0), Point(0, 0), -1));
- data.push_back(vertex_half_edge(Point(10, 0), Point(10, 5), -1));
- data.push_back(vertex_half_edge(Point(10, 5), Point(10, 0), 1));
- data.push_back(vertex_half_edge(Point(10, 5), Point(5, 5), 1));
- data.push_back(vertex_half_edge(Point(5, 10), Point(4, 1), -1));
- data.push_back(vertex_half_edge(Point(5, 10), Point(0, 10), 1));
- data.push_back(vertex_half_edge(Point(4, 1), Point(5, 10), 1));
- data.push_back(vertex_half_edge(Point(4, 1), Point(7, 2), -1));
- data.push_back(vertex_half_edge(Point(5, 5), Point(10, 5), -1));
- data.push_back(vertex_half_edge(Point(5, 5), Point(7, 2), 1));
- data.push_back(vertex_half_edge(Point(7, 2), Point(5, 5), -1));
- data.push_back(vertex_half_edge(Point(7, 2), Point(4, 1), 1));
- polygon_sort(data.begin(), data.end());
- pf.scan(polys, data.begin(), data.end());
- stdcout << "result size: " << polys.size() << "\n";
- for(std::size_t i = 0; i < polys.size(); ++i) {
- stdcout << polys[i] << "\n";
- }
- stdcout << "done testing polygon formation\n";
- return true;
- }
- template <typename stream_type>
- static inline bool testPolygonArbitraryFormationSelfTouch3(stream_type& stdcout) {
- stdcout << "testing polygon formation self touch 3\n";
- polygon_arbitrary_formation pf(true);
- std::vector<polygon_data<Unit> > polys;
- std::vector<vertex_half_edge> data;
- data.push_back(vertex_half_edge(Point(0, 0), Point(10, 0), 1));
- data.push_back(vertex_half_edge(Point(0, 0), Point(0, 10), 1));
- data.push_back(vertex_half_edge(Point(0, 10), Point(0, 0), -1));
- data.push_back(vertex_half_edge(Point(0, 10), Point(6, 10), -1));
- data.push_back(vertex_half_edge(Point(10, 0), Point(0, 0), -1));
- data.push_back(vertex_half_edge(Point(10, 0), Point(10, 5), -1));
- data.push_back(vertex_half_edge(Point(10, 5), Point(10, 0), 1));
- data.push_back(vertex_half_edge(Point(10, 5), Point(5, 5), 1));
- data.push_back(vertex_half_edge(Point(6, 10), Point(4, 1), -1));
- data.push_back(vertex_half_edge(Point(6, 10), Point(0, 10), 1));
- data.push_back(vertex_half_edge(Point(4, 1), Point(6, 10), 1));
- data.push_back(vertex_half_edge(Point(4, 1), Point(7, 2), -1));
- data.push_back(vertex_half_edge(Point(5, 5), Point(10, 5), -1));
- data.push_back(vertex_half_edge(Point(5, 5), Point(7, 2), 1));
- data.push_back(vertex_half_edge(Point(7, 2), Point(5, 5), -1));
- data.push_back(vertex_half_edge(Point(7, 2), Point(4, 1), 1));
- polygon_sort(data.begin(), data.end());
- pf.scan(polys, data.begin(), data.end());
- stdcout << "result size: " << polys.size() << "\n";
- for(std::size_t i = 0; i < polys.size(); ++i) {
- stdcout << polys[i] << "\n";
- }
- stdcout << "done testing polygon formation\n";
- return true;
- }
- template <typename stream_type>
- static inline bool testPolygonArbitraryFormationColinear(stream_type& stdcout) {
- stdcout << "testing polygon formation colinear 3\n";
- stdcout << "Polygon Set Data { <-3 2, -2 2>:1 <-3 2, -1 4>:-1 <-2 2, 0 2>:1 <-1 4, 0 2>:-1 } \n";
- polygon_arbitrary_formation pf(true);
- std::vector<polygon_data<Unit> > polys;
- std::vector<vertex_half_edge> data;
- data.push_back(vertex_half_edge(Point(-3, 2), Point(-2, 2), 1));
- data.push_back(vertex_half_edge(Point(-2, 2), Point(-3, 2), -1));
- data.push_back(vertex_half_edge(Point(-3, 2), Point(-1, 4), -1));
- data.push_back(vertex_half_edge(Point(-1, 4), Point(-3, 2), 1));
- data.push_back(vertex_half_edge(Point(-2, 2), Point(0, 2), 1));
- data.push_back(vertex_half_edge(Point(0, 2), Point(-2, 2), -1));
- data.push_back(vertex_half_edge(Point(-1, 4), Point(0, 2), -1));
- data.push_back(vertex_half_edge(Point(0, 2), Point(-1, 4), 1));
- polygon_sort(data.begin(), data.end());
- pf.scan(polys, data.begin(), data.end());
- stdcout << "result size: " << polys.size() << "\n";
- for(std::size_t i = 0; i < polys.size(); ++i) {
- stdcout << polys[i] << "\n";
- }
- stdcout << "done testing polygon formation\n";
- return true;
- }
- template <typename stream_type>
- static inline bool testSegmentIntersection(stream_type& stdcout) {
- stdcout << "testing segment intersection\n";
- half_edge he1, he2;
- he1.first = Point(0, 0);
- he1.second = Point(10, 10);
- he2.first = Point(0, 0);
- he2.second = Point(10, 20);
- Point result;
- bool b = scanline_base<Unit>::compute_intersection(result, he1, he2);
- if(!b || result != Point(0, 0)) return false;
- he1.first = Point(0, 10);
- b = scanline_base<Unit>::compute_intersection(result, he1, he2);
- if(!b || result != Point(5, 10)) return false;
- he1.first = Point(0, 11);
- b = scanline_base<Unit>::compute_intersection(result, he1, he2);
- if(!b || result != Point(5, 10)) return false;
- he1.first = Point(0, 0);
- he1.second = Point(1, 9);
- he2.first = Point(0, 9);
- he2.second = Point(1, 0);
- b = scanline_base<Unit>::compute_intersection(result, he1, he2);
- if(!b || result != Point(0, 4)) return false;
- he1.first = Point(0, -10);
- he1.second = Point(1, -1);
- he2.first = Point(0, -1);
- he2.second = Point(1, -10);
- b = scanline_base<Unit>::compute_intersection(result, he1, he2);
- if(!b || result != Point(0, -5)) return false;
- he1.first = Point((std::numeric_limits<int>::max)(), (std::numeric_limits<int>::max)()-1);
- he1.second = Point((std::numeric_limits<int>::min)(), (std::numeric_limits<int>::max)());
- //he1.second = Point(0, (std::numeric_limits<int>::max)());
- he2.first = Point((std::numeric_limits<int>::max)()-1, (std::numeric_limits<int>::max)());
- he2.second = Point((std::numeric_limits<int>::max)(), (std::numeric_limits<int>::min)());
- //he2.second = Point((std::numeric_limits<int>::max)(), 0);
- b = scanline_base<Unit>::compute_intersection(result, he1, he2);
- //b is false because of overflow error
- he1.first = Point(1000, 2000);
- he1.second = Point(1010, 2010);
- he2.first = Point(1000, 2000);
- he2.second = Point(1010, 2020);
- b = scanline_base<Unit>::compute_intersection(result, he1, he2);
- if(!b || result != Point(1000, 2000)) return false;
- return b;
- }
- };
- template <typename Unit>
- class poly_line_arbitrary_hole_data {
- private:
- typedef typename polygon_arbitrary_formation<Unit>::active_tail_arbitrary active_tail_arbitrary;
- active_tail_arbitrary* p_;
- public:
- typedef point_data<Unit> Point;
- typedef Point point_type;
- typedef Unit coordinate_type;
- typedef typename active_tail_arbitrary::iterator iterator_type;
- //typedef iterator_points_to_compact<iterator_type, Point> compact_iterator_type;
- typedef iterator_type iterator;
- inline poly_line_arbitrary_hole_data() : p_(0) {}
- inline poly_line_arbitrary_hole_data(active_tail_arbitrary* p) : p_(p) {}
- //use default copy and assign
- inline iterator begin() const { return p_->getTail()->begin(); }
- inline iterator end() const { return p_->getTail()->end(); }
- inline std::size_t size() const { return 0; }
- };
- template <typename Unit>
- class poly_line_arbitrary_polygon_data {
- private:
- typedef typename polygon_arbitrary_formation<Unit>::active_tail_arbitrary active_tail_arbitrary;
- active_tail_arbitrary* p_;
- public:
- typedef point_data<Unit> Point;
- typedef Point point_type;
- typedef Unit coordinate_type;
- typedef typename active_tail_arbitrary::iterator iterator_type;
- //typedef iterator_points_to_compact<iterator_type, Point> compact_iterator_type;
- typedef typename coordinate_traits<Unit>::coordinate_distance area_type;
- class iterator_holes_type {
- private:
- typedef poly_line_arbitrary_hole_data<Unit> holeType;
- mutable holeType hole_;
- typename active_tail_arbitrary::iteratorHoles itr_;
- public:
- typedef std::forward_iterator_tag iterator_category;
- typedef holeType value_type;
- typedef std::ptrdiff_t difference_type;
- typedef const holeType* pointer; //immutable
- typedef const holeType& reference; //immutable
- inline iterator_holes_type() : hole_(), itr_() {}
- inline iterator_holes_type(typename active_tail_arbitrary::iteratorHoles itr) : hole_(), itr_(itr) {}
- inline iterator_holes_type(const iterator_holes_type& that) : hole_(that.hole_), itr_(that.itr_) {}
- inline iterator_holes_type& operator=(const iterator_holes_type& that) {
- itr_ = that.itr_;
- return *this;
- }
- inline bool operator==(const iterator_holes_type& that) { return itr_ == that.itr_; }
- inline bool operator!=(const iterator_holes_type& that) { return itr_ != that.itr_; }
- inline iterator_holes_type& operator++() {
- ++itr_;
- return *this;
- }
- inline const iterator_holes_type operator++(int) {
- iterator_holes_type tmp = *this;
- ++(*this);
- return tmp;
- }
- inline reference operator*() {
- hole_ = holeType(*itr_);
- return hole_;
- }
- };
- typedef poly_line_arbitrary_hole_data<Unit> hole_type;
- inline poly_line_arbitrary_polygon_data() : p_(0) {}
- inline poly_line_arbitrary_polygon_data(active_tail_arbitrary* p) : p_(p) {}
- //use default copy and assign
- inline iterator_type begin() const { return p_->getTail()->begin(); }
- inline iterator_type end() const { return p_->getTail()->end(); }
- //inline compact_iterator_type begin_compact() const { return p_->getTail()->begin(); }
- //inline compact_iterator_type end_compact() const { return p_->getTail()->end(); }
- inline iterator_holes_type begin_holes() const { return iterator_holes_type(p_->getHoles().begin()); }
- inline iterator_holes_type end_holes() const { return iterator_holes_type(p_->getHoles().end()); }
- inline active_tail_arbitrary* yield() { return p_; }
- //stub out these four required functions that will not be used but are needed for the interface
- inline std::size_t size_holes() const { return 0; }
- inline std::size_t size() const { return 0; }
- };
- template <typename Unit>
- class trapezoid_arbitrary_formation : public polygon_arbitrary_formation<Unit> {
- private:
- typedef typename scanline_base<Unit>::Point Point;
- typedef typename scanline_base<Unit>::half_edge half_edge;
- typedef typename scanline_base<Unit>::vertex_half_edge vertex_half_edge;
- typedef typename scanline_base<Unit>::less_vertex_half_edge less_vertex_half_edge;
- typedef typename polygon_arbitrary_formation<Unit>::poly_line_arbitrary poly_line_arbitrary;
- typedef typename polygon_arbitrary_formation<Unit>::active_tail_arbitrary active_tail_arbitrary;
- typedef std::vector<std::pair<Point, int> > vertex_arbitrary_count;
- typedef typename polygon_arbitrary_formation<Unit>::less_half_edge_count less_half_edge_count;
- typedef std::vector<std::pair<std::pair<std::pair<Point, Point>, int>, active_tail_arbitrary*> > incoming_count;
- typedef typename polygon_arbitrary_formation<Unit>::less_incoming_count less_incoming_count;
- typedef typename polygon_arbitrary_formation<Unit>::vertex_arbitrary_compact vertex_arbitrary_compact;
- private:
- //definitions
- typedef std::map<vertex_half_edge, active_tail_arbitrary*, less_vertex_half_edge> scanline_data;
- typedef typename scanline_data::iterator iterator;
- typedef typename scanline_data::const_iterator const_iterator;
- //data
- public:
- inline trapezoid_arbitrary_formation() : polygon_arbitrary_formation<Unit>() {}
- inline trapezoid_arbitrary_formation(const trapezoid_arbitrary_formation& that) : polygon_arbitrary_formation<Unit>(that) {}
- inline trapezoid_arbitrary_formation& operator=(const trapezoid_arbitrary_formation& that) {
- * static_cast<polygon_arbitrary_formation<Unit>*>(this) = * static_cast<polygon_arbitrary_formation<Unit>*>(&that);
- return *this;
- }
- //cT is an output container of Polygon45 or Polygon45WithHoles
- //iT is an iterator over vertex_half_edge elements
- //inputBegin - inputEnd is a range of sorted iT that represents
- //one or more scanline stops worth of data
- template <class cT, class iT>
- void scan(cT& output, iT inputBegin, iT inputEnd) {
- //std::cout << "1\n";
- while(inputBegin != inputEnd) {
- //std::cout << "2\n";
- polygon_arbitrary_formation<Unit>::x_ = (*inputBegin).pt.get(HORIZONTAL);
- //std::cout << "SCAN FORMATION " << x_ << "\n";
- //std::cout << "x_ = " << x_ << "\n";
- //std::cout << "scan line size: " << scanData_.size() << "\n";
- inputBegin = processEvent_(output, inputBegin, inputEnd);
- }
- //std::cout << "scan line size: " << scanData_.size() << "\n";
- }
- private:
- //functions
- inline void getVerticalPair_(std::pair<active_tail_arbitrary*,
- active_tail_arbitrary*>& verticalPair,
- iterator previter) {
- active_tail_arbitrary* iterTail = (*previter).second;
- Point prevPoint(polygon_arbitrary_formation<Unit>::x_,
- convert_high_precision_type<Unit>(previter->first.evalAtX(polygon_arbitrary_formation<Unit>::x_)));
- iterTail->pushPoint(prevPoint);
- std::pair<active_tail_arbitrary*, active_tail_arbitrary*> tailPair =
- active_tail_arbitrary::createActiveTailsAsPair(prevPoint, true, 0, false);
- verticalPair.first = iterTail;
- verticalPair.second = tailPair.first;
- (*previter).second = tailPair.second;
- }
- template <class cT, class cT2>
- inline std::pair<std::pair<Point, int>, active_tail_arbitrary*>
- processPoint_(cT& output, cT2& elements,
- std::pair<active_tail_arbitrary*, active_tail_arbitrary*>& verticalPair,
- iterator previter, Point point, incoming_count& counts_from_scanline,
- vertex_arbitrary_count& incoming_count) {
- //std::cout << "\nAT POINT: " << point << "\n";
- //join any closing solid corners
- std::vector<int> counts;
- std::vector<int> incoming;
- std::vector<active_tail_arbitrary*> tails;
- counts.reserve(counts_from_scanline.size());
- tails.reserve(counts_from_scanline.size());
- incoming.reserve(incoming_count.size());
- for(std::size_t i = 0; i < counts_from_scanline.size(); ++i) {
- counts.push_back(counts_from_scanline[i].first.second);
- tails.push_back(counts_from_scanline[i].second);
- }
- for(std::size_t i = 0; i < incoming_count.size(); ++i) {
- incoming.push_back(incoming_count[i].second);
- if(incoming_count[i].first < point) {
- incoming.back() = 0;
- }
- }
- active_tail_arbitrary* returnValue = 0;
- std::pair<active_tail_arbitrary*, active_tail_arbitrary*> verticalPairOut;
- verticalPairOut.first = 0;
- verticalPairOut.second = 0;
- std::pair<Point, int> returnCount(Point(0, 0), 0);
- int i_size_less_1 = (int)(incoming.size()) -1;
- int c_size_less_1 = (int)(counts.size()) -1;
- int i_size = incoming.size();
- int c_size = counts.size();
- bool have_vertical_tail_from_below = false;
- if(c_size &&
- scanline_base<Unit>::is_vertical(counts_from_scanline.back().first.first)) {
- have_vertical_tail_from_below = true;
- }
- //assert size = size_less_1 + 1
- //std::cout << tails.size() << " " << incoming.size() << " " << counts_from_scanline.size() << " " << incoming_count.size() << "\n";
- // for(std::size_t i = 0; i < counts.size(); ++i) {
- // std::cout << counts_from_scanline[i].first.first.first.get(HORIZONTAL) << ",";
- // std::cout << counts_from_scanline[i].first.first.first.get(VERTICAL) << " ";
- // std::cout << counts_from_scanline[i].first.first.second.get(HORIZONTAL) << ",";
- // std::cout << counts_from_scanline[i].first.first.second.get(VERTICAL) << ":";
- // std::cout << counts_from_scanline[i].first.second << " ";
- // } std::cout << "\n";
- // print(incoming_count);
- {
- for(int i = 0; i < c_size_less_1; ++i) {
- //std::cout << i << "\n";
- if(counts[i] == -1) {
- //std::cout << "fixed i\n";
- for(int j = i + 1; j < c_size; ++j) {
- //std::cout << j << "\n";
- if(counts[j]) {
- if(counts[j] == 1) {
- //std::cout << "case1: " << i << " " << j << "\n";
- //if a figure is closed it will be written out by this function to output
- active_tail_arbitrary::joinChains(point, tails[i], tails[j], true, output);
- counts[i] = 0;
- counts[j] = 0;
- tails[i] = 0;
- tails[j] = 0;
- }
- break;
- }
- }
- }
- }
- }
- //find any pairs of incoming edges that need to create pair for leading solid
- //std::cout << "checking case2\n";
- {
- for(int i = 0; i < i_size_less_1; ++i) {
- //std::cout << i << "\n";
- if(incoming[i] == 1) {
- //std::cout << "fixed i\n";
- for(int j = i + 1; j < i_size; ++j) {
- //std::cout << j << "\n";
- if(incoming[j]) {
- //std::cout << incoming[j] << "\n";
- if(incoming[j] == -1) {
- //std::cout << "case2: " << i << " " << j << "\n";
- //std::cout << "creating active tail pair\n";
- std::pair<active_tail_arbitrary*, active_tail_arbitrary*> tailPair =
- active_tail_arbitrary::createActiveTailsAsPair(point, true, 0, polygon_arbitrary_formation<Unit>::fractureHoles_ != 0);
- //tailPair.first->print();
- //tailPair.second->print();
- if(j == i_size_less_1 && incoming_count[j].first.get(HORIZONTAL) == point.get(HORIZONTAL)) {
- //vertical active tail becomes return value
- returnValue = tailPair.first;
- returnCount.first = point;
- returnCount.second = 1;
- } else {
- //std::cout << "new element " << j-1 << " " << -1 << "\n";
- //std::cout << point << " " << incoming_count[j].first << "\n";
- elements.push_back(std::pair<vertex_half_edge,
- active_tail_arbitrary*>(vertex_half_edge(point,
- incoming_count[j].first, -1), tailPair.first));
- }
- //std::cout << "new element " << i-1 << " " << 1 << "\n";
- //std::cout << point << " " << incoming_count[i].first << "\n";
- elements.push_back(std::pair<vertex_half_edge,
- active_tail_arbitrary*>(vertex_half_edge(point,
- incoming_count[i].first, 1), tailPair.second));
- incoming[i] = 0;
- incoming[j] = 0;
- }
- break;
- }
- }
- }
- }
- }
- //find any active tail that needs to pass through to an incoming edge
- //we expect to find no more than two pass through
- //find pass through with solid on top
- {
- //std::cout << "checking case 3\n";
- for(int i = 0; i < c_size; ++i) {
- //std::cout << i << "\n";
- if(counts[i] != 0) {
- if(counts[i] == 1) {
- //std::cout << "fixed i\n";
- for(int j = i_size_less_1; j >= 0; --j) {
- if(incoming[j] != 0) {
- if(incoming[j] == 1) {
- //std::cout << "case3: " << i << " " << j << "\n";
- //tails[i]->print();
- //pass through solid on top
- tails[i]->pushPoint(point);
- //std::cout << "after push\n";
- if(j == i_size_less_1 && incoming_count[j].first.get(HORIZONTAL) == point.get(HORIZONTAL)) {
- returnValue = tails[i];
- returnCount.first = point;
- returnCount.second = -1;
- } else {
- std::pair<active_tail_arbitrary*, active_tail_arbitrary*> tailPair =
- active_tail_arbitrary::createActiveTailsAsPair(point, true, 0, false);
- verticalPairOut.first = tails[i];
- verticalPairOut.second = tailPair.first;
- elements.push_back(std::pair<vertex_half_edge,
- active_tail_arbitrary*>(vertex_half_edge(point,
- incoming_count[j].first, incoming[j]), tailPair.second));
- }
- tails[i] = 0;
- counts[i] = 0;
- incoming[j] = 0;
- }
- break;
- }
- }
- }
- break;
- }
- }
- }
- //std::cout << "checking case 4\n";
- //find pass through with solid on bottom
- {
- for(int i = c_size_less_1; i >= 0; --i) {
- //std::cout << "i = " << i << " with count " << counts[i] << "\n";
- if(counts[i] != 0) {
- if(counts[i] == -1) {
- for(int j = 0; j < i_size; ++j) {
- if(incoming[j] != 0) {
- if(incoming[j] == -1) {
- //std::cout << "case4: " << i << " " << j << "\n";
- //pass through solid on bottom
- //if count from scanline is vertical
- if(i == c_size_less_1 &&
- counts_from_scanline[i].first.first.first.get(HORIZONTAL) ==
- point.get(HORIZONTAL)) {
- //if incoming count is vertical
- if(j == i_size_less_1 &&
- incoming_count[j].first.get(HORIZONTAL) == point.get(HORIZONTAL)) {
- returnValue = tails[i];
- returnCount.first = point;
- returnCount.second = 1;
- } else {
- tails[i]->pushPoint(point);
- elements.push_back(std::pair<vertex_half_edge,
- active_tail_arbitrary*>(vertex_half_edge(point,
- incoming_count[j].first, incoming[j]), tails[i]));
- }
- } else if(j == i_size_less_1 &&
- incoming_count[j].first.get(HORIZONTAL) ==
- point.get(HORIZONTAL)) {
- if(verticalPair.first == 0) {
- getVerticalPair_(verticalPair, previter);
- }
- active_tail_arbitrary::joinChains(point, tails[i], verticalPair.first, true, output);
- returnValue = verticalPair.second;
- returnCount.first = point;
- returnCount.second = 1;
- } else {
- //neither is vertical
- if(verticalPair.first == 0) {
- getVerticalPair_(verticalPair, previter);
- }
- active_tail_arbitrary::joinChains(point, tails[i], verticalPair.first, true, output);
- verticalPair.second->pushPoint(point);
- elements.push_back(std::pair<vertex_half_edge,
- active_tail_arbitrary*>(vertex_half_edge(point,
- incoming_count[j].first, incoming[j]), verticalPair.second));
- }
- tails[i] = 0;
- counts[i] = 0;
- incoming[j] = 0;
- }
- break;
- }
- }
- }
- break;
- }
- }
- }
- //find the end of a hole or the beginning of a hole
- //find end of a hole
- {
- for(int i = 0; i < c_size_less_1; ++i) {
- if(counts[i] != 0) {
- for(int j = i+1; j < c_size; ++j) {
- if(counts[j] != 0) {
- //std::cout << "case5: " << i << " " << j << "\n";
- //we are ending a hole and may potentially close a figure and have to handle the hole
- tails[i]->pushPoint(point);
- verticalPairOut.first = tails[i];
- if(j == c_size_less_1 &&
- counts_from_scanline[j].first.first.first.get(HORIZONTAL) ==
- point.get(HORIZONTAL)) {
- verticalPairOut.second = tails[j];
- } else {
- //need to close a trapezoid below
- if(verticalPair.first == 0) {
- getVerticalPair_(verticalPair, previter);
- }
- active_tail_arbitrary::joinChains(point, tails[j], verticalPair.first, true, output);
- verticalPairOut.second = verticalPair.second;
- }
- tails[i] = 0;
- tails[j] = 0;
- counts[i] = 0;
- counts[j] = 0;
- break;
- }
- }
- break;
- }
- }
- }
- //find beginning of a hole
- {
- for(int i = 0; i < i_size_less_1; ++i) {
- if(incoming[i] != 0) {
- for(int j = i+1; j < i_size; ++j) {
- if(incoming[j] != 0) {
- //std::cout << "case6: " << i << " " << j << "\n";
- //we are beginning a empty space
- if(verticalPair.first == 0) {
- getVerticalPair_(verticalPair, previter);
- }
- verticalPair.second->pushPoint(point);
- if(j == i_size_less_1 &&
- incoming_count[j].first.get(HORIZONTAL) == point.get(HORIZONTAL)) {
- returnValue = verticalPair.first;
- returnCount.first = point;
- returnCount.second = -1;
- } else {
- std::pair<active_tail_arbitrary*, active_tail_arbitrary*> tailPair =
- active_tail_arbitrary::createActiveTailsAsPair(point, false, 0, false);
- elements.push_back(std::pair<vertex_half_edge,
- active_tail_arbitrary*>(vertex_half_edge(point,
- incoming_count[j].first, incoming[j]), tailPair.second));
- verticalPairOut.second = tailPair.first;
- verticalPairOut.first = verticalPair.first;
- }
- elements.push_back(std::pair<vertex_half_edge,
- active_tail_arbitrary*>(vertex_half_edge(point,
- incoming_count[i].first, incoming[i]), verticalPair.second));
- incoming[i] = 0;
- incoming[j] = 0;
- break;
- }
- }
- break;
- }
- }
- }
- if(have_vertical_tail_from_below) {
- if(tails.back()) {
- tails.back()->pushPoint(point);
- returnValue = tails.back();
- returnCount.first = point;
- returnCount.second = counts.back();
- }
- }
- verticalPair = verticalPairOut;
- //assert that tails, counts and incoming are all null
- return std::pair<std::pair<Point, int>, active_tail_arbitrary*>(returnCount, returnValue);
- }
- static inline void print(const vertex_arbitrary_count& count) {
- for(unsigned i = 0; i < count.size(); ++i) {
- //std::cout << count[i].first.get(HORIZONTAL) << ",";
- //std::cout << count[i].first.get(VERTICAL) << ":";
- //std::cout << count[i].second << " ";
- } //std::cout << "\n";
- }
- static inline void print(const scanline_data& data) {
- for(typename scanline_data::const_iterator itr = data.begin(); itr != data.end(); ++itr){
- //std::cout << itr->first.pt << ", " << itr->first.other_pt << "; ";
- } //std::cout << "\n";
- }
- template <class cT, class iT>
- inline iT processEvent_(cT& output, iT inputBegin, iT inputEnd) {
- //typedef typename high_precision_type<Unit>::type high_precision;
- //std::cout << "processEvent_\n";
- polygon_arbitrary_formation<Unit>::justBefore_ = true;
- //collect up all elements from the tree that are at the y
- //values of events in the input queue
- //create vector of new elements to add into tree
- active_tail_arbitrary* verticalTail = 0;
- std::pair<active_tail_arbitrary*, active_tail_arbitrary*> verticalPair;
- std::pair<Point, int> verticalCount(Point(0, 0), 0);
- iT currentIter = inputBegin;
- std::vector<iterator> elementIters;
- std::vector<std::pair<vertex_half_edge, active_tail_arbitrary*> > elements;
- while(currentIter != inputEnd && currentIter->pt.get(HORIZONTAL) == polygon_arbitrary_formation<Unit>::x_) {
- //std::cout << "loop\n";
- Unit currentY = (*currentIter).pt.get(VERTICAL);
- //std::cout << "current Y " << currentY << "\n";
- //std::cout << "scanline size " << scanData_.size() << "\n";
- //print(scanData_);
- iterator iter = this->lookUp_(currentY);
- //std::cout << "found element in scanline " << (iter != scanData_.end()) << "\n";
- //int counts[4] = {0, 0, 0, 0};
- incoming_count counts_from_scanline;
- //std::cout << "finding elements in tree\n";
- //if(iter != scanData_.end())
- // std::cout << "first iter y is " << iter->first.evalAtX(x_) << "\n";
- iterator previter = iter;
- if(previter != polygon_arbitrary_formation<Unit>::scanData_.end() &&
- previter->first.evalAtX(polygon_arbitrary_formation<Unit>::x_) >= currentY &&
- previter != polygon_arbitrary_formation<Unit>::scanData_.begin())
- --previter;
- while(iter != polygon_arbitrary_formation<Unit>::scanData_.end() &&
- ((iter->first.pt.x() == polygon_arbitrary_formation<Unit>::x_ && iter->first.pt.y() == currentY) ||
- (iter->first.other_pt.x() == polygon_arbitrary_formation<Unit>::x_ && iter->first.other_pt.y() == currentY))) {
- //iter->first.evalAtX(polygon_arbitrary_formation<Unit>::x_) == (high_precision)currentY) {
- //std::cout << "loop2\n";
- elementIters.push_back(iter);
- counts_from_scanline.push_back(std::pair<std::pair<std::pair<Point, Point>, int>, active_tail_arbitrary*>
- (std::pair<std::pair<Point, Point>, int>(std::pair<Point, Point>(iter->first.pt,
- iter->first.other_pt),
- iter->first.count),
- iter->second));
- ++iter;
- }
- Point currentPoint(polygon_arbitrary_formation<Unit>::x_, currentY);
- //std::cout << "counts_from_scanline size " << counts_from_scanline.size() << "\n";
- this->sort_incoming_count(counts_from_scanline, currentPoint);
- vertex_arbitrary_count incoming;
- //std::cout << "aggregating\n";
- do {
- //std::cout << "loop3\n";
- const vertex_half_edge& elem = *currentIter;
- incoming.push_back(std::pair<Point, int>(elem.other_pt, elem.count));
- ++currentIter;
- } while(currentIter != inputEnd && currentIter->pt.get(VERTICAL) == currentY &&
- currentIter->pt.get(HORIZONTAL) == polygon_arbitrary_formation<Unit>::x_);
- //print(incoming);
- this->sort_vertex_arbitrary_count(incoming, currentPoint);
- //std::cout << currentPoint.get(HORIZONTAL) << "," << currentPoint.get(VERTICAL) << "\n";
- //print(incoming);
- //std::cout << "incoming counts from input size " << incoming.size() << "\n";
- //compact_vertex_arbitrary_count(currentPoint, incoming);
- vertex_arbitrary_count tmp;
- tmp.reserve(incoming.size());
- for(std::size_t i = 0; i < incoming.size(); ++i) {
- if(currentPoint < incoming[i].first) {
- tmp.push_back(incoming[i]);
- }
- }
- incoming.swap(tmp);
- //std::cout << "incoming counts from input size " << incoming.size() << "\n";
- //now counts_from_scanline has the data from the left and
- //incoming has the data from the right at this point
- //cancel out any end points
- if(verticalTail) {
- //std::cout << "adding vertical tail to counts from scanline\n";
- //std::cout << -verticalCount.second << "\n";
- counts_from_scanline.push_back(std::pair<std::pair<std::pair<Point, Point>, int>, active_tail_arbitrary*>
- (std::pair<std::pair<Point, Point>, int>(std::pair<Point, Point>(verticalCount.first,
- currentPoint),
- -verticalCount.second),
- verticalTail));
- }
- if(!incoming.empty() && incoming.back().first.get(HORIZONTAL) == polygon_arbitrary_formation<Unit>::x_) {
- //std::cout << "inverted vertical event\n";
- incoming.back().second *= -1;
- }
- //std::cout << "calling processPoint_\n";
- std::pair<std::pair<Point, int>, active_tail_arbitrary*> result = processPoint_(output, elements, verticalPair, previter, Point(polygon_arbitrary_formation<Unit>::x_, currentY), counts_from_scanline, incoming);
- verticalCount = result.first;
- verticalTail = result.second;
- if(verticalPair.first != 0 && iter != polygon_arbitrary_formation<Unit>::scanData_.end() &&
- (currentIter == inputEnd || currentIter->pt.x() != polygon_arbitrary_formation<Unit>::x_ ||
- currentIter->pt.y() > (*iter).first.evalAtX(polygon_arbitrary_formation<Unit>::x_))) {
- //splice vertical pair into edge above
- active_tail_arbitrary* tailabove = (*iter).second;
- Point point(polygon_arbitrary_formation<Unit>::x_,
- convert_high_precision_type<Unit>((*iter).first.evalAtX(polygon_arbitrary_formation<Unit>::x_)));
- verticalPair.second->pushPoint(point);
- active_tail_arbitrary::joinChains(point, tailabove, verticalPair.first, true, output);
- (*iter).second = verticalPair.second;
- verticalPair.first = 0;
- verticalPair.second = 0;
- }
- }
- //std::cout << "erasing\n";
- //erase all elements from the tree
- for(typename std::vector<iterator>::iterator iter = elementIters.begin();
- iter != elementIters.end(); ++iter) {
- //std::cout << "erasing loop\n";
- polygon_arbitrary_formation<Unit>::scanData_.erase(*iter);
- }
- //switch comparison tie breaking policy
- polygon_arbitrary_formation<Unit>::justBefore_ = false;
- //add new elements into tree
- //std::cout << "inserting\n";
- for(typename std::vector<std::pair<vertex_half_edge, active_tail_arbitrary*> >::iterator iter = elements.begin();
- iter != elements.end(); ++iter) {
- //std::cout << "inserting loop\n";
- polygon_arbitrary_formation<Unit>::scanData_.insert(polygon_arbitrary_formation<Unit>::scanData_.end(), *iter);
- }
- //std::cout << "end processEvent\n";
- return currentIter;
- }
- public:
- template <typename stream_type>
- static inline bool testTrapezoidArbitraryFormationRect(stream_type& stdcout) {
- stdcout << "testing trapezoid formation\n";
- trapezoid_arbitrary_formation pf;
- std::vector<polygon_data<Unit> > polys;
- std::vector<vertex_half_edge> data;
- data.push_back(vertex_half_edge(Point(0, 0), Point(10, 0), 1));
- data.push_back(vertex_half_edge(Point(0, 0), Point(0, 10), 1));
- data.push_back(vertex_half_edge(Point(0, 10), Point(0, 0), -1));
- data.push_back(vertex_half_edge(Point(0, 10), Point(10, 10), -1));
- data.push_back(vertex_half_edge(Point(10, 0), Point(0, 0), -1));
- data.push_back(vertex_half_edge(Point(10, 0), Point(10, 10), -1));
- data.push_back(vertex_half_edge(Point(10, 10), Point(10, 0), 1));
- data.push_back(vertex_half_edge(Point(10, 10), Point(0, 10), 1));
- polygon_sort(data.begin(), data.end());
- pf.scan(polys, data.begin(), data.end());
- stdcout << "result size: " << polys.size() << "\n";
- for(std::size_t i = 0; i < polys.size(); ++i) {
- stdcout << polys[i] << "\n";
- }
- stdcout << "done testing trapezoid formation\n";
- return true;
- }
- template <typename stream_type>
- static inline bool testTrapezoidArbitraryFormationP1(stream_type& stdcout) {
- stdcout << "testing trapezoid formation P1\n";
- trapezoid_arbitrary_formation pf;
- std::vector<polygon_data<Unit> > polys;
- std::vector<vertex_half_edge> data;
- data.push_back(vertex_half_edge(Point(0, 0), Point(10, 10), 1));
- data.push_back(vertex_half_edge(Point(0, 0), Point(0, 10), 1));
- data.push_back(vertex_half_edge(Point(0, 10), Point(0, 0), -1));
- data.push_back(vertex_half_edge(Point(0, 10), Point(10, 20), -1));
- data.push_back(vertex_half_edge(Point(10, 10), Point(0, 0), -1));
- data.push_back(vertex_half_edge(Point(10, 10), Point(10, 20), -1));
- data.push_back(vertex_half_edge(Point(10, 20), Point(10, 10), 1));
- data.push_back(vertex_half_edge(Point(10, 20), Point(0, 10), 1));
- polygon_sort(data.begin(), data.end());
- pf.scan(polys, data.begin(), data.end());
- stdcout << "result size: " << polys.size() << "\n";
- for(std::size_t i = 0; i < polys.size(); ++i) {
- stdcout << polys[i] << "\n";
- }
- stdcout << "done testing trapezoid formation\n";
- return true;
- }
- template <typename stream_type>
- static inline bool testTrapezoidArbitraryFormationP2(stream_type& stdcout) {
- stdcout << "testing trapezoid formation P2\n";
- trapezoid_arbitrary_formation pf;
- std::vector<polygon_data<Unit> > polys;
- std::vector<vertex_half_edge> data;
- data.push_back(vertex_half_edge(Point(-3, 1), Point(2, -4), 1));
- data.push_back(vertex_half_edge(Point(-3, 1), Point(-2, 2), -1));
- data.push_back(vertex_half_edge(Point(-2, 2), Point(2, 4), -1));
- data.push_back(vertex_half_edge(Point(-2, 2), Point(-3, 1), 1));
- data.push_back(vertex_half_edge(Point(2, -4), Point(-3, 1), -1));
- data.push_back(vertex_half_edge(Point(2, -4), Point(2, 4), -1));
- data.push_back(vertex_half_edge(Point(2, 4), Point(-2, 2), 1));
- data.push_back(vertex_half_edge(Point(2, 4), Point(2, -4), 1));
- polygon_sort(data.begin(), data.end());
- pf.scan(polys, data.begin(), data.end());
- stdcout << "result size: " << polys.size() << "\n";
- for(std::size_t i = 0; i < polys.size(); ++i) {
- stdcout << polys[i] << "\n";
- }
- stdcout << "done testing trapezoid formation\n";
- return true;
- }
- template <typename stream_type>
- static inline bool testTrapezoidArbitraryFormationPolys(stream_type& stdcout) {
- stdcout << "testing trapezoid formation polys\n";
- trapezoid_arbitrary_formation pf;
- std::vector<polygon_with_holes_data<Unit> > polys;
- //trapezoid_arbitrary_formation pf2(true);
- //std::vector<polygon_with_holes_data<Unit> > polys2;
- std::vector<vertex_half_edge> data;
- data.push_back(vertex_half_edge(Point(0, 0), Point(100, 1), 1));
- data.push_back(vertex_half_edge(Point(0, 0), Point(1, 100), -1));
- data.push_back(vertex_half_edge(Point(1, 100), Point(0, 0), 1));
- data.push_back(vertex_half_edge(Point(1, 100), Point(101, 101), -1));
- data.push_back(vertex_half_edge(Point(100, 1), Point(0, 0), -1));
- data.push_back(vertex_half_edge(Point(100, 1), Point(101, 101), 1));
- data.push_back(vertex_half_edge(Point(101, 101), Point(100, 1), -1));
- data.push_back(vertex_half_edge(Point(101, 101), Point(1, 100), 1));
- data.push_back(vertex_half_edge(Point(2, 2), Point(10, 2), -1));
- data.push_back(vertex_half_edge(Point(2, 2), Point(2, 10), -1));
- data.push_back(vertex_half_edge(Point(2, 10), Point(2, 2), 1));
- data.push_back(vertex_half_edge(Point(2, 10), Point(10, 10), 1));
- data.push_back(vertex_half_edge(Point(10, 2), Point(2, 2), 1));
- data.push_back(vertex_half_edge(Point(10, 2), Point(10, 10), 1));
- data.push_back(vertex_half_edge(Point(10, 10), Point(10, 2), -1));
- data.push_back(vertex_half_edge(Point(10, 10), Point(2, 10), -1));
- data.push_back(vertex_half_edge(Point(2, 12), Point(10, 12), -1));
- data.push_back(vertex_half_edge(Point(2, 12), Point(2, 22), -1));
- data.push_back(vertex_half_edge(Point(2, 22), Point(2, 12), 1));
- data.push_back(vertex_half_edge(Point(2, 22), Point(10, 22), 1));
- data.push_back(vertex_half_edge(Point(10, 12), Point(2, 12), 1));
- data.push_back(vertex_half_edge(Point(10, 12), Point(10, 22), 1));
- data.push_back(vertex_half_edge(Point(10, 22), Point(10, 12), -1));
- data.push_back(vertex_half_edge(Point(10, 22), Point(2, 22), -1));
- polygon_sort(data.begin(), data.end());
- pf.scan(polys, data.begin(), data.end());
- stdcout << "result size: " << polys.size() << "\n";
- for(std::size_t i = 0; i < polys.size(); ++i) {
- stdcout << polys[i] << "\n";
- }
- //pf2.scan(polys2, data.begin(), data.end());
- //stdcout << "result size: " << polys2.size() << "\n";
- //for(std::size_t i = 0; i < polys2.size(); ++i) {
- // stdcout << polys2[i] << "\n";
- //}
- stdcout << "done testing trapezoid formation\n";
- return true;
- }
- template <typename stream_type>
- static inline bool testTrapezoidArbitraryFormationSelfTouch1(stream_type& stdcout) {
- stdcout << "testing trapezoid formation self touch 1\n";
- trapezoid_arbitrary_formation pf;
- std::vector<polygon_data<Unit> > polys;
- std::vector<vertex_half_edge> data;
- data.push_back(vertex_half_edge(Point(0, 0), Point(10, 0), 1));
- data.push_back(vertex_half_edge(Point(0, 0), Point(0, 10), 1));
- data.push_back(vertex_half_edge(Point(0, 10), Point(0, 0), -1));
- data.push_back(vertex_half_edge(Point(0, 10), Point(5, 10), -1));
- data.push_back(vertex_half_edge(Point(10, 0), Point(0, 0), -1));
- data.push_back(vertex_half_edge(Point(10, 0), Point(10, 5), -1));
- data.push_back(vertex_half_edge(Point(10, 5), Point(10, 0), 1));
- data.push_back(vertex_half_edge(Point(10, 5), Point(5, 5), 1));
- data.push_back(vertex_half_edge(Point(5, 10), Point(5, 5), 1));
- data.push_back(vertex_half_edge(Point(5, 10), Point(0, 10), 1));
- data.push_back(vertex_half_edge(Point(5, 2), Point(5, 5), -1));
- data.push_back(vertex_half_edge(Point(5, 2), Point(7, 2), -1));
- data.push_back(vertex_half_edge(Point(5, 5), Point(5, 10), -1));
- data.push_back(vertex_half_edge(Point(5, 5), Point(5, 2), 1));
- data.push_back(vertex_half_edge(Point(5, 5), Point(10, 5), -1));
- data.push_back(vertex_half_edge(Point(5, 5), Point(7, 2), 1));
- data.push_back(vertex_half_edge(Point(7, 2), Point(5, 5), -1));
- data.push_back(vertex_half_edge(Point(7, 2), Point(5, 2), 1));
- polygon_sort(data.begin(), data.end());
- pf.scan(polys, data.begin(), data.end());
- stdcout << "result size: " << polys.size() << "\n";
- for(std::size_t i = 0; i < polys.size(); ++i) {
- stdcout << polys[i] << "\n";
- }
- stdcout << "done testing trapezoid formation\n";
- return true;
- }
- };
- template <typename T>
- struct PolyLineArbitraryByConcept<T, polygon_with_holes_concept> { typedef poly_line_arbitrary_polygon_data<T> type; };
- template <typename T>
- struct PolyLineArbitraryByConcept<T, polygon_concept> { typedef poly_line_arbitrary_hole_data<T> type; };
- template <typename T>
- struct geometry_concept<poly_line_arbitrary_polygon_data<T> > { typedef polygon_45_with_holes_concept type; };
- template <typename T>
- struct geometry_concept<poly_line_arbitrary_hole_data<T> > { typedef polygon_45_concept type; };
- }
- }
- #endif
|