123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157 |
- ///////////////////////////////////////////////////////////////
- // Copyright 2013 John Maddock. Distributed under the Boost
- // Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt
- #ifndef BOOST_MP_CPP_BIN_FLOAT_TRANSCENDENTAL_HPP
- #define BOOST_MP_CPP_BIN_FLOAT_TRANSCENDENTAL_HPP
- #include <boost/multiprecision/detail/assert.hpp>
- namespace boost { namespace multiprecision { namespace backends {
- template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
- void eval_exp_taylor(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>& res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>& arg)
- {
- constexpr std::ptrdiff_t bits = cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count;
- //
- // Taylor series for small argument, note returns exp(x) - 1:
- //
- res = limb_type(0);
- cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> num(arg), denom, t;
- denom = limb_type(1);
- eval_add(res, num);
- for (std::size_t k = 2;; ++k)
- {
- eval_multiply(denom, k);
- eval_multiply(num, arg);
- eval_divide(t, num, denom);
- eval_add(res, t);
- if (eval_is_zero(t) || (res.exponent() - bits > t.exponent()))
- break;
- }
- }
- template <unsigned Digits, digit_base_type DigitBase, class Allocator, class Exponent, Exponent MinE, Exponent MaxE>
- void eval_exp(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>& res, const cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>& arg)
- {
- //
- // This is based on MPFR's method, let:
- //
- // n = floor(x / ln(2))
- //
- // Then:
- //
- // r = x - n ln(2) : 0 <= r < ln(2)
- //
- // We can reduce r further by dividing by 2^k, with k ~ sqrt(n),
- // so if:
- //
- // e0 = exp(r / 2^k) - 1
- //
- // With e0 evaluated by taylor series for small arguments, then:
- //
- // exp(x) = 2^n (1 + e0)^2^k
- //
- // Note that to preserve precision we actually square (1 + e0) k times, calculating
- // the result less one each time, i.e.
- //
- // (1 + e0)^2 - 1 = e0^2 + 2e0
- //
- // Then add the final 1 at the end, given that e0 is small, this effectively wipes
- // out the error in the last step.
- //
- using default_ops::eval_add;
- using default_ops::eval_convert_to;
- using default_ops::eval_increment;
- using default_ops::eval_multiply;
- using default_ops::eval_subtract;
- int type = eval_fpclassify(arg);
- bool isneg = eval_get_sign(arg) < 0;
- if (type == static_cast<int>(FP_NAN))
- {
- res = arg;
- errno = EDOM;
- return;
- }
- else if (type == static_cast<int>(FP_INFINITE))
- {
- res = arg;
- if (isneg)
- res = limb_type(0u);
- else
- res = arg;
- return;
- }
- else if (type == static_cast<int>(FP_ZERO))
- {
- res = limb_type(1);
- return;
- }
- cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> t, n;
- if (isneg)
- {
- t = arg;
- t.negate();
- eval_exp(res, t);
- t.swap(res);
- res = limb_type(1);
- eval_divide(res, t);
- return;
- }
- eval_divide(n, arg, default_ops::get_constant_ln2<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> >());
- eval_floor(n, n);
- eval_multiply(t, n, default_ops::get_constant_ln2<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> >());
- eval_subtract(t, arg);
- t.negate();
- if (t.compare(default_ops::get_constant_ln2<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> >()) > 0)
- {
- // There are some rare cases where the multiply rounds down leaving a remainder > ln2
- // See https://github.com/boostorg/multiprecision/issues/120
- eval_increment(n);
- t = limb_type(0);
- }
- if (eval_get_sign(t) < 0)
- {
- // There are some very rare cases where arg/ln2 is an integer, and the subsequent multiply
- // rounds up, in that situation t ends up negative at this point which breaks our invariants below:
- t = limb_type(0);
- }
- Exponent k, nn;
- eval_convert_to(&nn, n);
- if (nn == (std::numeric_limits<Exponent>::max)())
- {
- // The result will necessarily oveflow:
- res = std::numeric_limits<number<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> > >::infinity().backend();
- return;
- }
- BOOST_MP_ASSERT(t.compare(default_ops::get_constant_ln2<cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE> >()) < 0);
- k = nn ? Exponent(1) << (msb(nn) / 2) : 0;
- k = (std::min)(k, (Exponent)(cpp_bin_float<Digits, DigitBase, Allocator, Exponent, MinE, MaxE>::bit_count / 4));
- eval_ldexp(t, t, -k);
- eval_exp_taylor(res, t);
- //
- // Square 1 + res k times:
- //
- for (Exponent s = 0; s < k; ++s)
- {
- t.swap(res);
- eval_multiply(res, t, t);
- eval_ldexp(t, t, 1);
- eval_add(res, t);
- }
- eval_add(res, limb_type(1));
- eval_ldexp(res, res, nn);
- }
- }}} // namespace boost::multiprecision::backends
- #endif
|