123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353 |
- // (C) Copyright Nick Thompson 2018.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_TOOLS_SIGNAL_STATISTICS_HPP
- #define BOOST_MATH_TOOLS_SIGNAL_STATISTICS_HPP
- #include <algorithm>
- #include <iterator>
- #include <boost/math/tools/assert.hpp>
- #include <boost/math/tools/complex.hpp>
- #include <boost/math/tools/roots.hpp>
- #include <boost/math/tools/header_deprecated.hpp>
- #include <boost/math/statistics/univariate_statistics.hpp>
- #include <boost/math/tools/is_standalone.hpp>
- #ifndef BOOST_MATH_STANDALONE
- #include <boost/config.hpp>
- #ifdef BOOST_MATH_NO_CXX17_IF_CONSTEXPR
- #error "The header <boost/math/norms.hpp> can only be used in C++17 and later."
- #endif
- #endif
- BOOST_MATH_HEADER_DEPRECATED("<boost/math/statistics/signal_statistics.hpp>");
- namespace boost::math::tools {
- template<class ForwardIterator>
- auto absolute_gini_coefficient(ForwardIterator first, ForwardIterator last)
- {
- using std::abs;
- using RealOrComplex = typename std::iterator_traits<ForwardIterator>::value_type;
- BOOST_MATH_ASSERT_MSG(first != last && std::next(first) != last, "Computation of the Gini coefficient requires at least two samples.");
- std::sort(first, last, [](RealOrComplex a, RealOrComplex b) { return abs(b) > abs(a); });
- decltype(abs(*first)) i = 1;
- decltype(abs(*first)) num = 0;
- decltype(abs(*first)) denom = 0;
- for (auto it = first; it != last; ++it)
- {
- decltype(abs(*first)) tmp = abs(*it);
- num += tmp*i;
- denom += tmp;
- ++i;
- }
- // If the l1 norm is zero, all elements are zero, so every element is the same.
- if (denom == 0)
- {
- decltype(abs(*first)) zero = 0;
- return zero;
- }
- return ((2*num)/denom - i)/(i-1);
- }
- template<class RandomAccessContainer>
- inline auto absolute_gini_coefficient(RandomAccessContainer & v)
- {
- return boost::math::tools::absolute_gini_coefficient(v.begin(), v.end());
- }
- template<class ForwardIterator>
- auto sample_absolute_gini_coefficient(ForwardIterator first, ForwardIterator last)
- {
- size_t n = std::distance(first, last);
- return n*boost::math::tools::absolute_gini_coefficient(first, last)/(n-1);
- }
- template<class RandomAccessContainer>
- inline auto sample_absolute_gini_coefficient(RandomAccessContainer & v)
- {
- return boost::math::tools::sample_absolute_gini_coefficient(v.begin(), v.end());
- }
- // The Hoyer sparsity measure is defined in:
- // https://arxiv.org/pdf/0811.4706.pdf
- template<class ForwardIterator>
- auto hoyer_sparsity(const ForwardIterator first, const ForwardIterator last)
- {
- using T = typename std::iterator_traits<ForwardIterator>::value_type;
- using std::abs;
- using std::sqrt;
- BOOST_MATH_ASSERT_MSG(first != last && std::next(first) != last, "Computation of the Hoyer sparsity requires at least two samples.");
- if constexpr (std::is_unsigned<T>::value)
- {
- T l1 = 0;
- T l2 = 0;
- size_t n = 0;
- for (auto it = first; it != last; ++it)
- {
- l1 += *it;
- l2 += (*it)*(*it);
- n += 1;
- }
- double rootn = sqrt(n);
- return (rootn - l1/sqrt(l2) )/ (rootn - 1);
- }
- else {
- decltype(abs(*first)) l1 = 0;
- decltype(abs(*first)) l2 = 0;
- // We wouldn't need to count the elements if it was a random access iterator,
- // but our only constraint is that it's a forward iterator.
- size_t n = 0;
- for (auto it = first; it != last; ++it)
- {
- decltype(abs(*first)) tmp = abs(*it);
- l1 += tmp;
- l2 += tmp*tmp;
- n += 1;
- }
- if constexpr (std::is_integral<T>::value)
- {
- double rootn = sqrt(n);
- return (rootn - l1/sqrt(l2) )/ (rootn - 1);
- }
- else
- {
- decltype(abs(*first)) rootn = sqrt(static_cast<decltype(abs(*first))>(n));
- return (rootn - l1/sqrt(l2) )/ (rootn - 1);
- }
- }
- }
- template<class Container>
- inline auto hoyer_sparsity(Container const & v)
- {
- return boost::math::tools::hoyer_sparsity(v.cbegin(), v.cend());
- }
- template<class Container>
- auto oracle_snr(Container const & signal, Container const & noisy_signal)
- {
- using Real = typename Container::value_type;
- BOOST_MATH_ASSERT_MSG(signal.size() == noisy_signal.size(),
- "Signal and noisy_signal must be have the same number of elements.");
- if constexpr (std::is_integral<Real>::value)
- {
- double numerator = 0;
- double denominator = 0;
- for (size_t i = 0; i < signal.size(); ++i)
- {
- numerator += signal[i]*signal[i];
- denominator += (noisy_signal[i] - signal[i])*(noisy_signal[i] - signal[i]);
- }
- if (numerator == 0 && denominator == 0)
- {
- return std::numeric_limits<double>::quiet_NaN();
- }
- if (denominator == 0)
- {
- return std::numeric_limits<double>::infinity();
- }
- return numerator/denominator;
- }
- else if constexpr (boost::math::tools::is_complex_type<Real>::value)
- {
- using std::norm;
- typename Real::value_type numerator = 0;
- typename Real::value_type denominator = 0;
- for (size_t i = 0; i < signal.size(); ++i)
- {
- numerator += norm(signal[i]);
- denominator += norm(noisy_signal[i] - signal[i]);
- }
- if (numerator == 0 && denominator == 0)
- {
- return std::numeric_limits<typename Real::value_type>::quiet_NaN();
- }
- if (denominator == 0)
- {
- return std::numeric_limits<typename Real::value_type>::infinity();
- }
- return numerator/denominator;
- }
- else
- {
- Real numerator = 0;
- Real denominator = 0;
- for (size_t i = 0; i < signal.size(); ++i)
- {
- numerator += signal[i]*signal[i];
- denominator += (signal[i] - noisy_signal[i])*(signal[i] - noisy_signal[i]);
- }
- if (numerator == 0 && denominator == 0)
- {
- return std::numeric_limits<Real>::quiet_NaN();
- }
- if (denominator == 0)
- {
- return std::numeric_limits<Real>::infinity();
- }
- return numerator/denominator;
- }
- }
- template<class Container>
- auto mean_invariant_oracle_snr(Container const & signal, Container const & noisy_signal)
- {
- using Real = typename Container::value_type;
- BOOST_MATH_ASSERT_MSG(signal.size() == noisy_signal.size(), "Signal and noisy signal must be have the same number of elements.");
- Real mu = boost::math::tools::mean(signal);
- Real numerator = 0;
- Real denominator = 0;
- for (size_t i = 0; i < signal.size(); ++i)
- {
- Real tmp = signal[i] - mu;
- numerator += tmp*tmp;
- denominator += (signal[i] - noisy_signal[i])*(signal[i] - noisy_signal[i]);
- }
- if (numerator == 0 && denominator == 0)
- {
- return std::numeric_limits<Real>::quiet_NaN();
- }
- if (denominator == 0)
- {
- return std::numeric_limits<Real>::infinity();
- }
- return numerator/denominator;
- }
- template<class Container>
- auto mean_invariant_oracle_snr_db(Container const & signal, Container const & noisy_signal)
- {
- using std::log10;
- return 10*log10(boost::math::tools::mean_invariant_oracle_snr(signal, noisy_signal));
- }
- // Follows the definition of SNR given in Mallat, A Wavelet Tour of Signal Processing, equation 11.16.
- template<class Container>
- auto oracle_snr_db(Container const & signal, Container const & noisy_signal)
- {
- using std::log10;
- return 10*log10(boost::math::tools::oracle_snr(signal, noisy_signal));
- }
- // A good reference on the M2M4 estimator:
- // D. R. Pauluzzi and N. C. Beaulieu, "A comparison of SNR estimation techniques for the AWGN channel," IEEE Trans. Communications, Vol. 48, No. 10, pp. 1681-1691, 2000.
- // A nice python implementation:
- // https://github.com/gnuradio/gnuradio/blob/master/gr-digital/examples/snr_estimators.py
- template<class ForwardIterator>
- auto m2m4_snr_estimator(ForwardIterator first, ForwardIterator last, decltype(*first) estimated_signal_kurtosis=1, decltype(*first) estimated_noise_kurtosis=3)
- {
- BOOST_MATH_ASSERT_MSG(estimated_signal_kurtosis > 0, "The estimated signal kurtosis must be positive");
- BOOST_MATH_ASSERT_MSG(estimated_noise_kurtosis > 0, "The estimated noise kurtosis must be positive.");
- using Real = typename std::iterator_traits<ForwardIterator>::value_type;
- using std::sqrt;
- if constexpr (std::is_floating_point<Real>::value || std::numeric_limits<Real>::max_exponent)
- {
- // If we first eliminate N, we obtain the quadratic equation:
- // (ka+kw-6)S^2 + 2M2(3-kw)S + kw*M2^2 - M4 = 0 =: a*S^2 + bs*N + cs = 0
- // If we first eliminate S, we obtain the quadratic equation:
- // (ka+kw-6)N^2 + 2M2(3-ka)N + ka*M2^2 - M4 = 0 =: a*N^2 + bn*N + cn = 0
- // I believe these equations are totally independent quadratics;
- // if one has a complex solution it is not necessarily the case that the other must also.
- // However, I can't prove that, so there is a chance that this does unnecessary work.
- // Future improvements: There are algorithms which can solve quadratics much more effectively than the naive implementation found here.
- // See: https://stackoverflow.com/questions/48979861/numerically-stable-method-for-solving-quadratic-equations/50065711#50065711
- auto [M1, M2, M3, M4] = boost::math::tools::first_four_moments(first, last);
- if (M4 == 0)
- {
- // The signal is constant. There is no noise:
- return std::numeric_limits<Real>::infinity();
- }
- // Change to notation in Pauluzzi, equation 41:
- auto kw = estimated_noise_kurtosis;
- auto ka = estimated_signal_kurtosis;
- // A common case, since it's the default:
- Real a = (ka+kw-6);
- Real bs = 2*M2*(3-kw);
- Real cs = kw*M2*M2 - M4;
- Real bn = 2*M2*(3-ka);
- Real cn = ka*M2*M2 - M4;
- auto [S0, S1] = boost::math::tools::quadratic_roots(a, bs, cs);
- if (S1 > 0)
- {
- auto N = M2 - S1;
- if (N > 0)
- {
- return S1/N;
- }
- if (S0 > 0)
- {
- N = M2 - S0;
- if (N > 0)
- {
- return S0/N;
- }
- }
- }
- auto [N0, N1] = boost::math::tools::quadratic_roots(a, bn, cn);
- if (N1 > 0)
- {
- auto S = M2 - N1;
- if (S > 0)
- {
- return S/N1;
- }
- if (N0 > 0)
- {
- S = M2 - N0;
- if (S > 0)
- {
- return S/N0;
- }
- }
- }
- // This happens distressingly often. It's a limitation of the method.
- return std::numeric_limits<Real>::quiet_NaN();
- }
- else
- {
- BOOST_MATH_ASSERT_MSG(false, "The M2M4 estimator has not been implemented for this type.");
- return std::numeric_limits<Real>::quiet_NaN();
- }
- }
- template<class Container>
- inline auto m2m4_snr_estimator(Container const & noisy_signal, typename Container::value_type estimated_signal_kurtosis=1, typename Container::value_type estimated_noise_kurtosis=3)
- {
- return m2m4_snr_estimator(noisy_signal.cbegin(), noisy_signal.cend(), estimated_signal_kurtosis, estimated_noise_kurtosis);
- }
- template<class ForwardIterator>
- inline auto m2m4_snr_estimator_db(ForwardIterator first, ForwardIterator last, decltype(*first) estimated_signal_kurtosis=1, decltype(*first) estimated_noise_kurtosis=3)
- {
- using std::log10;
- return 10*log10(m2m4_snr_estimator(first, last, estimated_signal_kurtosis, estimated_noise_kurtosis));
- }
- template<class Container>
- inline auto m2m4_snr_estimator_db(Container const & noisy_signal, typename Container::value_type estimated_signal_kurtosis=1, typename Container::value_type estimated_noise_kurtosis=3)
- {
- using std::log10;
- return 10*log10(m2m4_snr_estimator(noisy_signal, estimated_signal_kurtosis, estimated_noise_kurtosis));
- }
- }
- #endif
|