123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862 |
- // (C) Copyright John Maddock 2006.
- // (C) Copyright Jeremy William Murphy 2015.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_TOOLS_POLYNOMIAL_HPP
- #define BOOST_MATH_TOOLS_POLYNOMIAL_HPP
- #ifdef _MSC_VER
- #pragma once
- #endif
- #include <boost/math/tools/assert.hpp>
- #include <boost/math/tools/config.hpp>
- #include <boost/math/tools/cxx03_warn.hpp>
- #include <boost/math/tools/rational.hpp>
- #include <boost/math/tools/real_cast.hpp>
- #include <boost/math/policies/error_handling.hpp>
- #include <boost/math/special_functions/binomial.hpp>
- #include <boost/math/tools/detail/is_const_iterable.hpp>
- #include <vector>
- #include <ostream>
- #include <algorithm>
- #include <initializer_list>
- #include <type_traits>
- #include <iterator>
- namespace boost{ namespace math{ namespace tools{
- template <class T>
- T chebyshev_coefficient(unsigned n, unsigned m)
- {
- BOOST_MATH_STD_USING
- if(m > n)
- return 0;
- if((n & 1) != (m & 1))
- return 0;
- if(n == 0)
- return 1;
- T result = T(n) / 2;
- unsigned r = n - m;
- r /= 2;
- BOOST_MATH_ASSERT(n - 2 * r == m);
- if(r & 1)
- result = -result;
- result /= n - r;
- result *= boost::math::binomial_coefficient<T>(n - r, r);
- result *= ldexp(1.0f, m);
- return result;
- }
- template <class Seq>
- Seq polynomial_to_chebyshev(const Seq& s)
- {
- // Converts a Polynomial into Chebyshev form:
- typedef typename Seq::value_type value_type;
- typedef typename Seq::difference_type difference_type;
- Seq result(s);
- difference_type order = s.size() - 1;
- difference_type even_order = order & 1 ? order - 1 : order;
- difference_type odd_order = order & 1 ? order : order - 1;
- for(difference_type i = even_order; i >= 0; i -= 2)
- {
- value_type val = s[i];
- for(difference_type k = even_order; k > i; k -= 2)
- {
- val -= result[k] * chebyshev_coefficient<value_type>(static_cast<unsigned>(k), static_cast<unsigned>(i));
- }
- val /= chebyshev_coefficient<value_type>(static_cast<unsigned>(i), static_cast<unsigned>(i));
- result[i] = val;
- }
- result[0] *= 2;
- for(difference_type i = odd_order; i >= 0; i -= 2)
- {
- value_type val = s[i];
- for(difference_type k = odd_order; k > i; k -= 2)
- {
- val -= result[k] * chebyshev_coefficient<value_type>(static_cast<unsigned>(k), static_cast<unsigned>(i));
- }
- val /= chebyshev_coefficient<value_type>(static_cast<unsigned>(i), static_cast<unsigned>(i));
- result[i] = val;
- }
- return result;
- }
- template <class Seq, class T>
- T evaluate_chebyshev(const Seq& a, const T& x)
- {
- // Clenshaw's formula:
- typedef typename Seq::difference_type difference_type;
- T yk2 = 0;
- T yk1 = 0;
- T yk = 0;
- for(difference_type i = a.size() - 1; i >= 1; --i)
- {
- yk2 = yk1;
- yk1 = yk;
- yk = 2 * x * yk1 - yk2 + a[i];
- }
- return a[0] / 2 + yk * x - yk1;
- }
- template <typename T>
- class polynomial;
- namespace detail {
- /**
- * Knuth, The Art of Computer Programming: Volume 2, Third edition, 1998
- * Chapter 4.6.1, Algorithm D: Division of polynomials over a field.
- *
- * @tparam T Coefficient type, must be not be an integer.
- *
- * Template-parameter T actually must be a field but we don't currently have that
- * subtlety of distinction.
- */
- template <typename T, typename N>
- typename std::enable_if<!std::numeric_limits<T>::is_integer, void >::type
- division_impl(polynomial<T> &q, polynomial<T> &u, const polynomial<T>& v, N n, N k)
- {
- q[k] = u[n + k] / v[n];
- for (N j = n + k; j > k;)
- {
- j--;
- u[j] -= q[k] * v[j - k];
- }
- }
- template <class T, class N>
- T integer_power(T t, N n)
- {
- switch(n)
- {
- case 0:
- return static_cast<T>(1u);
- case 1:
- return t;
- case 2:
- return t * t;
- case 3:
- return t * t * t;
- }
- T result = integer_power(t, n / 2);
- result *= result;
- if(n & 1)
- result *= t;
- return result;
- }
- /**
- * Knuth, The Art of Computer Programming: Volume 2, Third edition, 1998
- * Chapter 4.6.1, Algorithm R: Pseudo-division of polynomials.
- *
- * @tparam T Coefficient type, must be an integer.
- *
- * Template-parameter T actually must be a unique factorization domain but we
- * don't currently have that subtlety of distinction.
- */
- template <typename T, typename N>
- typename std::enable_if<std::numeric_limits<T>::is_integer, void >::type
- division_impl(polynomial<T> &q, polynomial<T> &u, const polynomial<T>& v, N n, N k)
- {
- q[k] = u[n + k] * integer_power(v[n], k);
- for (N j = n + k; j > 0;)
- {
- j--;
- u[j] = v[n] * u[j] - (j < k ? T(0) : u[n + k] * v[j - k]);
- }
- }
- /**
- * Knuth, The Art of Computer Programming: Volume 2, Third edition, 1998
- * Chapter 4.6.1, Algorithm D and R: Main loop.
- *
- * @param u Dividend.
- * @param v Divisor.
- */
- template <typename T>
- std::pair< polynomial<T>, polynomial<T> >
- division(polynomial<T> u, const polynomial<T>& v)
- {
- BOOST_MATH_ASSERT(v.size() <= u.size());
- BOOST_MATH_ASSERT(v);
- BOOST_MATH_ASSERT(u);
- typedef typename polynomial<T>::size_type N;
- N const m = u.size() - 1, n = v.size() - 1;
- N k = m - n;
- polynomial<T> q;
- q.data().resize(m - n + 1);
- do
- {
- division_impl(q, u, v, n, k);
- }
- while (k-- != 0);
- u.data().resize(n);
- u.normalize(); // Occasionally, the remainder is zeroes.
- return std::make_pair(q, u);
- }
- //
- // These structures are the same as the void specializations of the functors of the same name
- // in the std lib from C++14 onwards:
- //
- struct negate
- {
- template <class T>
- T operator()(T const &x) const
- {
- return -x;
- }
- };
- struct plus
- {
- template <class T, class U>
- T operator()(T const &x, U const& y) const
- {
- return x + y;
- }
- };
- struct minus
- {
- template <class T, class U>
- T operator()(T const &x, U const& y) const
- {
- return x - y;
- }
- };
- } // namespace detail
- /**
- * Returns the zero element for multiplication of polynomials.
- */
- template <class T>
- polynomial<T> zero_element(std::multiplies< polynomial<T> >)
- {
- return polynomial<T>();
- }
- template <class T>
- polynomial<T> identity_element(std::multiplies< polynomial<T> >)
- {
- return polynomial<T>(T(1));
- }
- /* Calculates a / b and a % b, returning the pair (quotient, remainder) together
- * because the same amount of computation yields both.
- * This function is not defined for division by zero: user beware.
- */
- template <typename T>
- std::pair< polynomial<T>, polynomial<T> >
- quotient_remainder(const polynomial<T>& dividend, const polynomial<T>& divisor)
- {
- BOOST_MATH_ASSERT(divisor);
- if (dividend.size() < divisor.size())
- return std::make_pair(polynomial<T>(), dividend);
- return detail::division(dividend, divisor);
- }
- template <class T>
- class polynomial
- {
- public:
- // typedefs:
- typedef typename std::vector<T>::value_type value_type;
- typedef typename std::vector<T>::size_type size_type;
- // construct:
- polynomial()= default;
- template <class U>
- polynomial(const U* data, unsigned order)
- : m_data(data, data + order + 1)
- {
- normalize();
- }
- template <class Iterator>
- polynomial(Iterator first, Iterator last)
- : m_data(first, last)
- {
- normalize();
- }
- template <class Iterator>
- polynomial(Iterator first, unsigned length)
- : m_data(first, std::next(first, length + 1))
- {
- normalize();
- }
- polynomial(std::vector<T>&& p) : m_data(std::move(p))
- {
- normalize();
- }
- template <class U, typename std::enable_if<std::is_convertible<U, T>::value, bool>::type = true>
- explicit polynomial(const U& point)
- {
- if (point != U(0))
- m_data.push_back(point);
- }
- // move:
- polynomial(polynomial&& p) noexcept
- : m_data(std::move(p.m_data)) { }
- // copy:
- polynomial(const polynomial& p)
- : m_data(p.m_data) { }
- template <class U>
- polynomial(const polynomial<U>& p)
- {
- m_data.resize(p.size());
- for(unsigned i = 0; i < p.size(); ++i)
- {
- m_data[i] = boost::math::tools::real_cast<T>(p[i]);
- }
- }
- #ifdef BOOST_MATH_HAS_IS_CONST_ITERABLE
- template <class Range, typename std::enable_if<boost::math::tools::detail::is_const_iterable<Range>::value, bool>::type = true>
- explicit polynomial(const Range& r)
- : polynomial(r.begin(), r.end())
- {
- }
- #endif
- polynomial(std::initializer_list<T> l) : polynomial(std::begin(l), std::end(l))
- {
- }
- polynomial&
- operator=(std::initializer_list<T> l)
- {
- m_data.assign(std::begin(l), std::end(l));
- normalize();
- return *this;
- }
- // access:
- size_type size() const { return m_data.size(); }
- size_type degree() const
- {
- if (size() == 0)
- BOOST_MATH_THROW_EXCEPTION(std::logic_error("degree() is undefined for the zero polynomial."));
- return m_data.size() - 1;
- }
- value_type& operator[](size_type i)
- {
- return m_data[i];
- }
- const value_type& operator[](size_type i) const
- {
- return m_data[i];
- }
- T evaluate(T z) const
- {
- return this->operator()(z);
- }
- T operator()(T z) const
- {
- return m_data.size() > 0 ? boost::math::tools::evaluate_polynomial((m_data).data(), z, m_data.size()) : T(0);
- }
- std::vector<T> chebyshev() const
- {
- return polynomial_to_chebyshev(m_data);
- }
- std::vector<T> const& data() const
- {
- return m_data;
- }
- std::vector<T> & data()
- {
- return m_data;
- }
- polynomial<T> prime() const
- {
- #ifdef _MSC_VER
- // Disable int->float conversion warning:
- #pragma warning(push)
- #pragma warning(disable:4244)
- #endif
- if (m_data.size() == 0)
- {
- return polynomial<T>({});
- }
- std::vector<T> p_data(m_data.size() - 1);
- for (size_t i = 0; i < p_data.size(); ++i) {
- p_data[i] = m_data[i+1]*static_cast<T>(i+1);
- }
- return polynomial<T>(std::move(p_data));
- #ifdef _MSC_VER
- #pragma warning(pop)
- #endif
- }
- polynomial<T> integrate() const
- {
- std::vector<T> i_data(m_data.size() + 1);
- // Choose integration constant such that P(0) = 0.
- i_data[0] = T(0);
- for (size_t i = 1; i < i_data.size(); ++i)
- {
- i_data[i] = m_data[i-1]/static_cast<T>(i);
- }
- return polynomial<T>(std::move(i_data));
- }
- // operators:
- polynomial& operator =(polynomial&& p) noexcept
- {
- m_data = std::move(p.m_data);
- return *this;
- }
- polynomial& operator =(const polynomial& p)
- {
- m_data = p.m_data;
- return *this;
- }
- template <class U>
- typename std::enable_if<std::is_constructible<T, U>::value, polynomial&>::type operator +=(const U& value)
- {
- addition(value);
- normalize();
- return *this;
- }
- template <class U>
- typename std::enable_if<std::is_constructible<T, U>::value, polynomial&>::type operator -=(const U& value)
- {
- subtraction(value);
- normalize();
- return *this;
- }
- template <class U>
- typename std::enable_if<std::is_constructible<T, U>::value, polynomial&>::type operator *=(const U& value)
- {
- multiplication(value);
- normalize();
- return *this;
- }
- template <class U>
- typename std::enable_if<std::is_constructible<T, U>::value, polynomial&>::type operator /=(const U& value)
- {
- division(value);
- normalize();
- return *this;
- }
- template <class U>
- typename std::enable_if<std::is_constructible<T, U>::value, polynomial&>::type operator %=(const U& /*value*/)
- {
- // We can always divide by a scalar, so there is no remainder:
- this->set_zero();
- return *this;
- }
- template <class U>
- polynomial& operator +=(const polynomial<U>& value)
- {
- addition(value);
- normalize();
- return *this;
- }
- template <class U>
- polynomial& operator -=(const polynomial<U>& value)
- {
- subtraction(value);
- normalize();
- return *this;
- }
- template <typename U, typename V>
- void multiply(const polynomial<U>& a, const polynomial<V>& b) {
- if (!a || !b)
- {
- this->set_zero();
- return;
- }
- std::vector<T> prod(a.size() + b.size() - 1, T(0));
- for (unsigned i = 0; i < a.size(); ++i)
- for (unsigned j = 0; j < b.size(); ++j)
- prod[i+j] += a.m_data[i] * b.m_data[j];
- m_data.swap(prod);
- }
- template <class U>
- polynomial& operator *=(const polynomial<U>& value)
- {
- this->multiply(*this, value);
- return *this;
- }
- template <typename U>
- polynomial& operator /=(const polynomial<U>& value)
- {
- *this = quotient_remainder(*this, value).first;
- return *this;
- }
- template <typename U>
- polynomial& operator %=(const polynomial<U>& value)
- {
- *this = quotient_remainder(*this, value).second;
- return *this;
- }
- template <typename U>
- polynomial& operator >>=(U const &n)
- {
- BOOST_MATH_ASSERT(n <= m_data.size());
- m_data.erase(m_data.begin(), m_data.begin() + n);
- return *this;
- }
- template <typename U>
- polynomial& operator <<=(U const &n)
- {
- m_data.insert(m_data.begin(), n, static_cast<T>(0));
- normalize();
- return *this;
- }
- // Convenient and efficient query for zero.
- bool is_zero() const
- {
- return m_data.empty();
- }
- // Conversion to bool.
- inline explicit operator bool() const
- {
- return !m_data.empty();
- }
- // Fast way to set a polynomial to zero.
- void set_zero()
- {
- m_data.clear();
- }
- /** Remove zero coefficients 'from the top', that is for which there are no
- * non-zero coefficients of higher degree. */
- void normalize()
- {
- m_data.erase(std::find_if(m_data.rbegin(), m_data.rend(), [](const T& x)->bool { return x != T(0); }).base(), m_data.end());
- }
- private:
- template <class U, class R>
- polynomial& addition(const U& value, R op)
- {
- if(m_data.size() == 0)
- m_data.resize(1, 0);
- m_data[0] = op(m_data[0], value);
- return *this;
- }
- template <class U>
- polynomial& addition(const U& value)
- {
- return addition(value, detail::plus());
- }
- template <class U>
- polynomial& subtraction(const U& value)
- {
- return addition(value, detail::minus());
- }
- template <class U, class R>
- polynomial& addition(const polynomial<U>& value, R op)
- {
- if (m_data.size() < value.size())
- m_data.resize(value.size(), 0);
- for(size_type i = 0; i < value.size(); ++i)
- m_data[i] = op(m_data[i], value[i]);
- return *this;
- }
- template <class U>
- polynomial& addition(const polynomial<U>& value)
- {
- return addition(value, detail::plus());
- }
- template <class U>
- polynomial& subtraction(const polynomial<U>& value)
- {
- return addition(value, detail::minus());
- }
- template <class U>
- polynomial& multiplication(const U& value)
- {
- std::transform(m_data.begin(), m_data.end(), m_data.begin(), [&](const T& x)->T { return x * value; });
- return *this;
- }
- template <class U>
- polynomial& division(const U& value)
- {
- std::transform(m_data.begin(), m_data.end(), m_data.begin(), [&](const T& x)->T { return x / value; });
- return *this;
- }
- std::vector<T> m_data;
- };
- template <class T>
- inline polynomial<T> operator + (const polynomial<T>& a, const polynomial<T>& b)
- {
- polynomial<T> result(a);
- result += b;
- return result;
- }
- template <class T>
- inline polynomial<T> operator + (polynomial<T>&& a, const polynomial<T>& b)
- {
- a += b;
- return std::move(a);
- }
- template <class T>
- inline polynomial<T> operator + (const polynomial<T>& a, polynomial<T>&& b)
- {
- b += a;
- return b;
- }
- template <class T>
- inline polynomial<T> operator + (polynomial<T>&& a, polynomial<T>&& b)
- {
- a += b;
- return a;
- }
- template <class T>
- inline polynomial<T> operator - (const polynomial<T>& a, const polynomial<T>& b)
- {
- polynomial<T> result(a);
- result -= b;
- return result;
- }
- template <class T>
- inline polynomial<T> operator - (polynomial<T>&& a, const polynomial<T>& b)
- {
- a -= b;
- return a;
- }
- template <class T>
- inline polynomial<T> operator - (const polynomial<T>& a, polynomial<T>&& b)
- {
- b -= a;
- return -b;
- }
- template <class T>
- inline polynomial<T> operator - (polynomial<T>&& a, polynomial<T>&& b)
- {
- a -= b;
- return a;
- }
- template <class T>
- inline polynomial<T> operator * (const polynomial<T>& a, const polynomial<T>& b)
- {
- polynomial<T> result;
- result.multiply(a, b);
- return result;
- }
- template <class T>
- inline polynomial<T> operator / (const polynomial<T>& a, const polynomial<T>& b)
- {
- return quotient_remainder(a, b).first;
- }
- template <class T>
- inline polynomial<T> operator % (const polynomial<T>& a, const polynomial<T>& b)
- {
- return quotient_remainder(a, b).second;
- }
- template <class T, class U>
- inline typename std::enable_if<std::is_constructible<T, U>::value, polynomial<T> >::type operator + (polynomial<T> a, const U& b)
- {
- a += b;
- return a;
- }
- template <class T, class U>
- inline typename std::enable_if<std::is_constructible<T, U>::value, polynomial<T> >::type operator - (polynomial<T> a, const U& b)
- {
- a -= b;
- return a;
- }
- template <class T, class U>
- inline typename std::enable_if<std::is_constructible<T, U>::value, polynomial<T> >::type operator * (polynomial<T> a, const U& b)
- {
- a *= b;
- return a;
- }
- template <class T, class U>
- inline typename std::enable_if<std::is_constructible<T, U>::value, polynomial<T> >::type operator / (polynomial<T> a, const U& b)
- {
- a /= b;
- return a;
- }
- template <class T, class U>
- inline typename std::enable_if<std::is_constructible<T, U>::value, polynomial<T> >::type operator % (const polynomial<T>&, const U&)
- {
- // Since we can always divide by a scalar, result is always an empty polynomial:
- return polynomial<T>();
- }
- template <class U, class T>
- inline typename std::enable_if<std::is_constructible<T, U>::value, polynomial<T> >::type operator + (const U& a, polynomial<T> b)
- {
- b += a;
- return b;
- }
- template <class U, class T>
- inline typename std::enable_if<std::is_constructible<T, U>::value, polynomial<T> >::type operator - (const U& a, polynomial<T> b)
- {
- b -= a;
- return -b;
- }
- template <class U, class T>
- inline typename std::enable_if<std::is_constructible<T, U>::value, polynomial<T> >::type operator * (const U& a, polynomial<T> b)
- {
- b *= a;
- return b;
- }
- template <class T>
- bool operator == (const polynomial<T> &a, const polynomial<T> &b)
- {
- return a.data() == b.data();
- }
- template <class T>
- bool operator != (const polynomial<T> &a, const polynomial<T> &b)
- {
- return a.data() != b.data();
- }
- template <typename T, typename U>
- polynomial<T> operator >> (polynomial<T> a, const U& b)
- {
- a >>= b;
- return a;
- }
- template <typename T, typename U>
- polynomial<T> operator << (polynomial<T> a, const U& b)
- {
- a <<= b;
- return a;
- }
- // Unary minus (negate).
- template <class T>
- polynomial<T> operator - (polynomial<T> a)
- {
- std::transform(a.data().begin(), a.data().end(), a.data().begin(), detail::negate());
- return a;
- }
- template <class T>
- bool odd(polynomial<T> const &a)
- {
- return a.size() > 0 && a[0] != static_cast<T>(0);
- }
- template <class T>
- bool even(polynomial<T> const &a)
- {
- return !odd(a);
- }
- template <class T>
- polynomial<T> pow(polynomial<T> base, int exp)
- {
- if (exp < 0)
- return policies::raise_domain_error(
- "boost::math::tools::pow<%1%>",
- "Negative powers are not supported for polynomials.",
- base, policies::policy<>());
- // if the policy is ignore_error or errno_on_error, raise_domain_error
- // will return std::numeric_limits<polynomial<T>>::quiet_NaN(), which
- // defaults to polynomial<T>(), which is the zero polynomial
- polynomial<T> result(T(1));
- if (exp & 1)
- result = base;
- /* "Exponentiation by squaring" */
- while (exp >>= 1)
- {
- base *= base;
- if (exp & 1)
- result *= base;
- }
- return result;
- }
- template <class charT, class traits, class T>
- inline std::basic_ostream<charT, traits>& operator << (std::basic_ostream<charT, traits>& os, const polynomial<T>& poly)
- {
- os << "{ ";
- for(unsigned i = 0; i < poly.size(); ++i)
- {
- if(i) os << ", ";
- os << poly[i];
- }
- os << " }";
- return os;
- }
- } // namespace tools
- } // namespace math
- } // namespace boost
- //
- // Polynomial specific overload of gcd algorithm:
- //
- #include <boost/math/tools/polynomial_gcd.hpp>
- #endif // BOOST_MATH_TOOLS_POLYNOMIAL_HPP
|