123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124 |
- // (C) Copyright Nick Thompson 2020.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_TOOLS_ENGEL_EXPANSION_HPP
- #define BOOST_MATH_TOOLS_ENGEL_EXPANSION_HPP
- #include <cmath>
- #include <cstdint>
- #include <vector>
- #include <ostream>
- #include <iomanip>
- #include <limits>
- #include <stdexcept>
- #include <boost/math/tools/is_standalone.hpp>
- #ifndef BOOST_MATH_STANDALONE
- #include <boost/config.hpp>
- #ifdef BOOST_MATH_NO_CXX17_IF_CONSTEXPR
- #error "The header <boost/math/norms.hpp> can only be used in C++17 and later."
- #endif
- #endif
- namespace boost::math::tools {
- template<typename Real, typename Z = int64_t>
- class engel_expansion {
- public:
- engel_expansion(Real x) : x_{x}
- {
- using std::floor;
- using std::abs;
- using std::sqrt;
- using std::isfinite;
- if (!isfinite(x))
- {
- throw std::domain_error("Cannot convert non-finites into an Engel expansion.");
- }
- if(x==0)
- {
- throw std::domain_error("Zero does not have an Engel expansion.");
- }
- a_.reserve(64);
- // Let the error bound grow by 1 ULP/iteration.
- // I haven't done the error analysis to show that this is an expected rate of error growth,
- // but if you don't do this, you can easily get into an infinite loop.
- Real i = 1;
- Real computed = 0;
- Real term = 1;
- Real scale = std::numeric_limits<Real>::epsilon()*abs(x_)/2;
- Real u = x;
- while (abs(x_ - computed) > (i++)*scale)
- {
- Real recip = 1/u;
- Real ak = ceil(recip);
- a_.push_back(static_cast<Z>(ak));
- u = u*ak - 1;
- if (u==0)
- {
- break;
- }
- term /= ak;
- computed += term;
- }
- for (size_t j = 1; j < a_.size(); ++j)
- {
- // Sanity check: This should only happen when wraparound occurs:
- if (a_[j] < a_[j-1])
- {
- throw std::domain_error("The digits of an Engel expansion must form a non-decreasing sequence; consider increasing the wide of the integer type.");
- }
- // Watch out for saturating behavior:
- if (a_[j] == (std::numeric_limits<Z>::max)())
- {
- throw std::domain_error("The integer type Z does not have enough width to hold the terms of the Engel expansion; please widen the type.");
- }
- }
- a_.shrink_to_fit();
- }
-
-
- const std::vector<Z>& digits() const
- {
- return a_;
- }
- template<typename T, typename Z2>
- friend std::ostream& operator<<(std::ostream& out, engel_expansion<T, Z2>& eng);
- private:
- Real x_;
- std::vector<Z> a_;
- };
- template<typename Real, typename Z2>
- std::ostream& operator<<(std::ostream& out, engel_expansion<Real, Z2>& engel)
- {
- constexpr const int p = std::numeric_limits<Real>::max_digits10;
- if constexpr (p == 2147483647)
- {
- out << std::setprecision(engel.x_.backend().precision());
- }
- else
- {
- out << std::setprecision(p);
- }
- out << "{";
- for (size_t i = 0; i < engel.a_.size() - 1; ++i)
- {
- out << engel.a_[i] << ", ";
- }
- out << engel.a_.back();
- out << "}";
- return out;
- }
- }
- #endif
|