123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- // (C) Copyright Nick Thompson 2021.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_TOOLS_CUBIC_ROOTS_HPP
- #define BOOST_MATH_TOOLS_CUBIC_ROOTS_HPP
- #include <algorithm>
- #include <array>
- #include <boost/math/special_functions/sign.hpp>
- #include <boost/math/tools/roots.hpp>
- namespace boost::math::tools {
- // Solves ax^3 + bx^2 + cx + d = 0.
- // Only returns the real roots, as types get weird for real coefficients and
- // complex roots. Follows Numerical Recipes, Chapter 5, section 6. NB: A better
- // algorithm apparently exists: Algorithm 954: An Accurate and Efficient Cubic
- // and Quartic Equation Solver for Physical Applications However, I don't have
- // access to that paper!
- template <typename Real>
- std::array<Real, 3> cubic_roots(Real a, Real b, Real c, Real d) {
- using std::abs;
- using std::acos;
- using std::cbrt;
- using std::cos;
- using std::fma;
- using std::sqrt;
- std::array<Real, 3> roots = {std::numeric_limits<Real>::quiet_NaN(),
- std::numeric_limits<Real>::quiet_NaN(),
- std::numeric_limits<Real>::quiet_NaN()};
- if (a == 0) {
- // bx^2 + cx + d = 0:
- if (b == 0) {
- // cx + d = 0:
- if (c == 0) {
- if (d != 0) {
- // No solutions:
- return roots;
- }
- roots[0] = 0;
- roots[1] = 0;
- roots[2] = 0;
- return roots;
- }
- roots[0] = -d / c;
- return roots;
- }
- auto [x0, x1] = quadratic_roots(b, c, d);
- roots[0] = x0;
- roots[1] = x1;
- return roots;
- }
- if (d == 0) {
- auto [x0, x1] = quadratic_roots(a, b, c);
- roots[0] = x0;
- roots[1] = x1;
- roots[2] = 0;
- std::sort(roots.begin(), roots.end());
- return roots;
- }
- Real p = b / a;
- Real q = c / a;
- Real r = d / a;
- Real Q = (p * p - 3 * q) / 9;
- Real R = (2 * p * p * p - 9 * p * q + 27 * r) / 54;
- if (R * R < Q * Q * Q) {
- Real rtQ = sqrt(Q);
- Real theta = acos(R / (Q * rtQ)) / 3;
- Real st = sin(theta);
- Real ct = cos(theta);
- roots[0] = -2 * rtQ * ct - p / 3;
- roots[1] = -rtQ * (-ct + sqrt(Real(3)) * st) - p / 3;
- roots[2] = rtQ * (ct + sqrt(Real(3)) * st) - p / 3;
- } else {
- // In Numerical Recipes, Chapter 5, Section 6, it is claimed that we
- // only have one real root if R^2 >= Q^3. But this isn't true; we can
- // even see this from equation 5.6.18. The condition for having three
- // real roots is that A = B. It *is* the case that if we're in this
- // branch, and we have 3 real roots, two are a double root. Take
- // (x+1)^2(x-2) = x^3 - 3x -2 as an example. This clearly has a double
- // root at x = -1, and it gets sent into this branch.
- Real arg = R * R - Q * Q * Q;
- Real A = (R >= 0 ? -1 : 1) * cbrt(abs(R) + sqrt(arg));
- Real B = 0;
- if (A != 0) {
- B = Q / A;
- }
- roots[0] = A + B - p / 3;
- // Yes, we're comparing floats for equality:
- // Any perturbation pushes the roots into the complex plane; out of the
- // bailiwick of this routine.
- if (A == B || arg == 0) {
- roots[1] = -A - p / 3;
- roots[2] = -A - p / 3;
- }
- }
- // Root polishing:
- for (auto &r : roots) {
- // Horner's method.
- // Here I'll take John Gustaffson's opinion that the fma is a *distinct*
- // operation from a*x +b: Make sure to compile these fmas into a single
- // instruction and not a function call! (I'm looking at you Windows.)
- Real f = fma(a, r, b);
- f = fma(f, r, c);
- f = fma(f, r, d);
- Real df = fma(3 * a, r, 2 * b);
- df = fma(df, r, c);
- if (df != 0) {
- Real d2f = fma(6 * a, r, 2 * b);
- Real denom = 2 * df * df - f * d2f;
- if (denom != 0) {
- r -= 2 * f * df / denom;
- } else {
- r -= f / df;
- }
- }
- }
- std::sort(roots.begin(), roots.end());
- return roots;
- }
- // Computes the empirical residual p(r) (first element) and expected residual
- // eps*|rp'(r)| (second element) for a root. Recall that for a numerically
- // computed root r satisfying r = r_0(1+eps) of a function p, |p(r)| <=
- // eps|rp'(r)|.
- template <typename Real>
- std::array<Real, 2> cubic_root_residual(Real a, Real b, Real c, Real d,
- Real root) {
- using std::abs;
- using std::fma;
- std::array<Real, 2> out;
- Real residual = fma(a, root, b);
- residual = fma(residual, root, c);
- residual = fma(residual, root, d);
- out[0] = residual;
- // The expected residual is:
- // eps*[4|ar^3| + 3|br^2| + 2|cr| + |d|]
- // This can be demonstrated by assuming the coefficients and the root are
- // perturbed according to the rounding model of floating point arithmetic,
- // and then working through the inequalities.
- root = abs(root);
- Real expected_residual = fma(4 * abs(a), root, 3 * abs(b));
- expected_residual = fma(expected_residual, root, 2 * abs(c));
- expected_residual = fma(expected_residual, root, abs(d));
- out[1] = expected_residual * std::numeric_limits<Real>::epsilon();
- return out;
- }
- // Computes the condition number of rootfinding. This is defined in Corless, A
- // Graduate Introduction to Numerical Methods, Section 3.2.1.
- template <typename Real>
- Real cubic_root_condition_number(Real a, Real b, Real c, Real d, Real root) {
- using std::abs;
- using std::fma;
- // There are *absolute* condition numbers that can be defined when r = 0;
- // but they basically reduce to the residual computed above.
- if (root == static_cast<Real>(0)) {
- return std::numeric_limits<Real>::infinity();
- }
- Real numerator = fma(abs(a), abs(root), abs(b));
- numerator = fma(numerator, abs(root), abs(c));
- numerator = fma(numerator, abs(root), abs(d));
- Real denominator = fma(3 * a, root, 2 * b);
- denominator = fma(denominator, root, c);
- if (denominator == static_cast<Real>(0)) {
- return std::numeric_limits<Real>::infinity();
- }
- denominator *= root;
- return numerator / abs(denominator);
- }
- } // namespace boost::math::tools
- #endif
|