123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234 |
- // Copyright Nick Thompson 2017.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0.
- // (See accompanying file LICENSE_1_0.txt
- // or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_SPECIAL_LEGENDRE_STIELTJES_HPP
- #define BOOST_MATH_SPECIAL_LEGENDRE_STIELTJES_HPP
- /*
- * Constructs the Legendre-Stieltjes polynomial of degree m.
- * The Legendre-Stieltjes polynomials are used to create extensions for Gaussian quadratures,
- * commonly called "Gauss-Konrod" quadratures.
- *
- * References:
- * Patterson, TNL. "The optimum addition of points to quadrature formulae." Mathematics of Computation 22.104 (1968): 847-856.
- */
- #include <iostream>
- #include <vector>
- #include <boost/math/tools/roots.hpp>
- #include <boost/math/special_functions/legendre.hpp>
- namespace boost{
- namespace math{
- template<class Real>
- class legendre_stieltjes
- {
- public:
- legendre_stieltjes(size_t m)
- {
- if (m == 0)
- {
- throw std::domain_error("The Legendre-Stieltjes polynomial is defined for order m > 0.\n");
- }
- m_m = static_cast<int>(m);
- std::ptrdiff_t n = m - 1;
- std::ptrdiff_t q;
- std::ptrdiff_t r;
- if ((n & 1) == 1)
- {
- q = 1;
- r = (n-1)/2 + 2;
- }
- else
- {
- q = 0;
- r = n/2 + 1;
- }
- m_a.resize(r + 1);
- // We'll keep the ones-based indexing at the cost of storing a superfluous element
- // so that we can follow Patterson's notation exactly.
- m_a[r] = static_cast<Real>(1);
- // Make sure using the zero index is a bug:
- m_a[0] = std::numeric_limits<Real>::quiet_NaN();
- for (std::ptrdiff_t k = 1; k < r; ++k)
- {
- Real ratio = 1;
- m_a[r - k] = 0;
- for (std::ptrdiff_t i = r + 1 - k; i <= r; ++i)
- {
- // See Patterson, equation 12
- std::ptrdiff_t num = (n - q + 2*(i + k - 1))*(n + q + 2*(k - i + 1))*(n-1-q+2*(i-k))*(2*(k+i-1) -1 -q -n);
- std::ptrdiff_t den = (n - q + 2*(i - k))*(2*(k + i - 1) - q - n)*(n + 1 + q + 2*(k - i))*(n - 1 - q + 2*(i + k));
- ratio *= static_cast<Real>(num)/static_cast<Real>(den);
- m_a[r - k] -= ratio*m_a[i];
- }
- }
- }
- Real norm_sq() const
- {
- Real t = 0;
- bool odd = ((m_m & 1) == 1);
- for (size_t i = 1; i < m_a.size(); ++i)
- {
- if(odd)
- {
- t += 2*m_a[i]*m_a[i]/static_cast<Real>(4*i-1);
- }
- else
- {
- t += 2*m_a[i]*m_a[i]/static_cast<Real>(4*i-3);
- }
- }
- return t;
- }
- Real operator()(Real x) const
- {
- // Trivial implementation:
- // Em += m_a[i]*legendre_p(2*i - 1, x); m odd
- // Em += m_a[i]*legendre_p(2*i - 2, x); m even
- size_t r = m_a.size() - 1;
- Real p0 = 1;
- Real p1 = x;
- Real Em;
- bool odd = ((m_m & 1) == 1);
- if (odd)
- {
- Em = m_a[1]*p1;
- }
- else
- {
- Em = m_a[1]*p0;
- }
- unsigned n = 1;
- for (size_t i = 2; i <= r; ++i)
- {
- std::swap(p0, p1);
- p1 = boost::math::legendre_next(n, x, p0, p1);
- ++n;
- if (!odd)
- {
- Em += m_a[i]*p1;
- }
- std::swap(p0, p1);
- p1 = boost::math::legendre_next(n, x, p0, p1);
- ++n;
- if(odd)
- {
- Em += m_a[i]*p1;
- }
- }
- return Em;
- }
- Real prime(Real x) const
- {
- Real Em_prime = 0;
- for (size_t i = 1; i < m_a.size(); ++i)
- {
- if(m_m & 1)
- {
- Em_prime += m_a[i]*detail::legendre_p_prime_imp(static_cast<unsigned>(2*i - 1), x, policies::policy<>());
- }
- else
- {
- Em_prime += m_a[i]*detail::legendre_p_prime_imp(static_cast<unsigned>(2*i - 2), x, policies::policy<>());
- }
- }
- return Em_prime;
- }
- std::vector<Real> zeros() const
- {
- using boost::math::constants::half;
- std::vector<Real> stieltjes_zeros;
- std::vector<Real> legendre_zeros = legendre_p_zeros<Real>(m_m - 1);
- size_t k;
- if (m_m & 1)
- {
- stieltjes_zeros.resize(legendre_zeros.size() + 1, std::numeric_limits<Real>::quiet_NaN());
- stieltjes_zeros[0] = 0;
- k = 1;
- }
- else
- {
- stieltjes_zeros.resize(legendre_zeros.size(), std::numeric_limits<Real>::quiet_NaN());
- k = 0;
- }
- while (k < stieltjes_zeros.size())
- {
- Real lower_bound;
- Real upper_bound;
- if (m_m & 1)
- {
- lower_bound = legendre_zeros[k - 1];
- if (k == legendre_zeros.size())
- {
- upper_bound = 1;
- }
- else
- {
- upper_bound = legendre_zeros[k];
- }
- }
- else
- {
- lower_bound = legendre_zeros[k];
- if (k == legendre_zeros.size() - 1)
- {
- upper_bound = 1;
- }
- else
- {
- upper_bound = legendre_zeros[k+1];
- }
- }
- // The root bracketing is not very tight; to keep weird stuff from happening
- // in the Newton's method, let's tighten up the tolerance using a few bisections.
- boost::math::tools::eps_tolerance<Real> tol(6);
- auto g = [&](Real t) { return this->operator()(t); };
- auto p = boost::math::tools::bisect(g, lower_bound, upper_bound, tol);
- Real x_nk_guess = p.first + (p.second - p.first)*half<Real>();
- std::uintmax_t number_of_iterations = 500;
- auto f = [&] (Real x) { Real Pn = this->operator()(x);
- Real Pn_prime = this->prime(x);
- return std::pair<Real, Real>(Pn, Pn_prime); };
- const Real x_nk = boost::math::tools::newton_raphson_iterate(f, x_nk_guess,
- p.first, p.second,
- tools::digits<Real>(),
- number_of_iterations);
- BOOST_MATH_ASSERT(p.first < x_nk);
- BOOST_MATH_ASSERT(x_nk < p.second);
- stieltjes_zeros[k] = x_nk;
- ++k;
- }
- return stieltjes_zeros;
- }
- private:
- // Coefficients of Legendre expansion
- std::vector<Real> m_a;
- int m_m;
- };
- }}
- #endif
|