123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081 |
- // Copyright (c) 2015 John Maddock
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- //
- #ifndef BOOST_MATH_ELLINT_JZ_HPP
- #define BOOST_MATH_ELLINT_JZ_HPP
- #ifdef _MSC_VER
- #pragma once
- #endif
- #include <boost/math/special_functions/math_fwd.hpp>
- #include <boost/math/special_functions/ellint_1.hpp>
- #include <boost/math/special_functions/ellint_rj.hpp>
- #include <boost/math/special_functions/sign.hpp>
- #include <boost/math/constants/constants.hpp>
- #include <boost/math/policies/error_handling.hpp>
- #include <boost/math/tools/workaround.hpp>
- // Elliptic integral the Jacobi Zeta function.
- namespace boost { namespace math {
-
- namespace detail{
- // Elliptic integral - Jacobi Zeta
- template <typename T, typename Policy>
- T jacobi_zeta_imp(T phi, T k, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- using namespace boost::math::tools;
- using namespace boost::math::constants;
- bool invert = false;
- if(phi < 0)
- {
- phi = fabs(phi);
- invert = true;
- }
- T result;
- T sinp = sin(phi);
- T cosp = cos(phi);
- T s2 = sinp * sinp;
- T k2 = k * k;
- T kp = 1 - k2;
- if(k == 1)
- result = sinp * (boost::math::sign)(cosp); // We get here by simplifying JacobiZeta[w, 1] in Mathematica, and the fact that 0 <= phi.
- else
- {
- typedef std::integral_constant<int,
- std::is_floating_point<T>::value&& std::numeric_limits<T>::digits && (std::numeric_limits<T>::digits <= 54) ? 0 :
- std::is_floating_point<T>::value && std::numeric_limits<T>::digits && (std::numeric_limits<T>::digits <= 64) ? 1 : 2
- > precision_tag_type;
- result = k2 * sinp * cosp * sqrt(1 - k2 * s2) * ellint_rj_imp(T(0), kp, T(1), T(1 - k2 * s2), pol) / (3 * ellint_k_imp(k, pol, precision_tag_type()));
- }
- return invert ? T(-result) : result;
- }
- } // detail
- template <class T1, class T2, class Policy>
- inline typename tools::promote_args<T1, T2>::type jacobi_zeta(T1 k, T2 phi, const Policy& pol)
- {
- typedef typename tools::promote_args<T1, T2>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- return policies::checked_narrowing_cast<result_type, Policy>(detail::jacobi_zeta_imp(static_cast<value_type>(phi), static_cast<value_type>(k), pol), "boost::math::jacobi_zeta<%1%>(%1%,%1%)");
- }
- template <class T1, class T2>
- inline typename tools::promote_args<T1, T2>::type jacobi_zeta(T1 k, T2 phi)
- {
- return boost::math::jacobi_zeta(k, phi, policies::policy<>());
- }
- }} // namespaces
- #endif // BOOST_MATH_ELLINT_D_HPP
|