123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869 |
- // (C) Copyright Nick Thompson 2019.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_SPECIAL_JACOBI_HPP
- #define BOOST_MATH_SPECIAL_JACOBI_HPP
- #include <limits>
- #include <stdexcept>
- namespace boost { namespace math {
- template<typename Real>
- Real jacobi(unsigned n, Real alpha, Real beta, Real x)
- {
- static_assert(!std::is_integral<Real>::value, "Jacobi polynomials do not work with integer arguments.");
- if (n == 0) {
- return Real(1);
- }
- Real y0 = 1;
- Real y1 = (alpha+1) + (alpha+beta+2)*(x-1)/Real(2);
- Real yk = y1;
- Real k = 2;
- Real k_max = n*(1+std::numeric_limits<Real>::epsilon());
- while(k < k_max)
- {
- // Hoping for lots of common subexpression elimination by the compiler:
- Real denom = 2*k*(k+alpha+beta)*(2*k+alpha+beta-2);
- Real gamma1 = (2*k+alpha+beta-1)*( (2*k+alpha+beta)*(2*k+alpha+beta-2)*x + alpha*alpha -beta*beta);
- Real gamma0 = -2*(k+alpha-1)*(k+beta-1)*(2*k+alpha+beta);
- yk = (gamma1*y1 + gamma0*y0)/denom;
- y0 = y1;
- y1 = yk;
- k += 1;
- }
- return yk;
- }
- template<typename Real>
- Real jacobi_derivative(unsigned n, Real alpha, Real beta, Real x, unsigned k)
- {
- if (k > n) {
- return Real(0);
- }
- Real scale = 1;
- for(unsigned j = 1; j <= k; ++j) {
- scale *= (alpha + beta + n + j)/2;
- }
- return scale*jacobi<Real>(n-k, alpha + k, beta+k, x);
- }
- template<typename Real>
- Real jacobi_prime(unsigned n, Real alpha, Real beta, Real x)
- {
- return jacobi_derivative<Real>(n, alpha, beta, x, 1);
- }
- template<typename Real>
- Real jacobi_double_prime(unsigned n, Real alpha, Real beta, Real x)
- {
- return jacobi_derivative<Real>(n, alpha, beta, x, 2);
- }
- }}
- #endif
|