123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168 |
- // Copyright (c) 2006 Xiaogang Zhang, 2015 John Maddock
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- //
- // History:
- // XZ wrote the original of this file as part of the Google
- // Summer of Code 2006. JM modified it to fit into the
- // Boost.Math conceptual framework better, and to handle
- // types longer than 80-bit reals.
- // Updated 2015 to use Carlson's latest methods.
- //
- #ifndef BOOST_MATH_ELLINT_RF_HPP
- #define BOOST_MATH_ELLINT_RF_HPP
- #ifdef _MSC_VER
- #pragma once
- #endif
- #include <boost/math/special_functions/math_fwd.hpp>
- #include <boost/math/tools/config.hpp>
- #include <boost/math/constants/constants.hpp>
- #include <boost/math/policies/error_handling.hpp>
- #include <boost/math/special_functions/ellint_rc.hpp>
- // Carlson's elliptic integral of the first kind
- // R_F(x, y, z) = 0.5 * \int_{0}^{\infty} [(t+x)(t+y)(t+z)]^{-1/2} dt
- // Carlson, Numerische Mathematik, vol 33, 1 (1979)
- namespace boost { namespace math { namespace detail{
- template <typename T, typename Policy>
- T ellint_rf_imp(T x, T y, T z, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- using namespace boost::math;
- using std::swap;
- static const char* function = "boost::math::ellint_rf<%1%>(%1%,%1%,%1%)";
- if(x < 0 || y < 0 || z < 0)
- {
- return policies::raise_domain_error<T>(function, "domain error, all arguments must be non-negative, only sensible result is %1%.", std::numeric_limits<T>::quiet_NaN(), pol);
- }
- if(x + y == 0 || y + z == 0 || z + x == 0)
- {
- return policies::raise_domain_error<T>(function, "domain error, at most one argument can be zero, only sensible result is %1%.", std::numeric_limits<T>::quiet_NaN(), pol);
- }
- //
- // Special cases from http://dlmf.nist.gov/19.20#i
- //
- if(x == y)
- {
- if(x == z)
- {
- // x, y, z equal:
- return 1 / sqrt(x);
- }
- else
- {
- // 2 equal, x and y:
- if(z == 0)
- return constants::pi<T>() / (2 * sqrt(x));
- else
- return ellint_rc_imp(z, x, pol);
- }
- }
- if(x == z)
- {
- if(y == 0)
- return constants::pi<T>() / (2 * sqrt(x));
- else
- return ellint_rc_imp(y, x, pol);
- }
- if(y == z)
- {
- if(x == 0)
- return constants::pi<T>() / (2 * sqrt(y));
- else
- return ellint_rc_imp(x, y, pol);
- }
- if(x == 0)
- swap(x, z);
- else if(y == 0)
- swap(y, z);
- if(z == 0)
- {
- //
- // Special case for one value zero:
- //
- T xn = sqrt(x);
- T yn = sqrt(y);
- while(fabs(xn - yn) >= T(2.7) * tools::root_epsilon<T>() * fabs(xn))
- {
- T t = sqrt(xn * yn);
- xn = (xn + yn) / 2;
- yn = t;
- }
- return constants::pi<T>() / (xn + yn);
- }
- T xn = x;
- T yn = y;
- T zn = z;
- T An = (x + y + z) / 3;
- T A0 = An;
- T Q = pow(3 * boost::math::tools::epsilon<T>(), T(-1) / 8) * (std::max)((std::max)(fabs(An - xn), fabs(An - yn)), fabs(An - zn));
- T fn = 1;
- // duplication
- unsigned k = 1;
- for(; k < boost::math::policies::get_max_series_iterations<Policy>(); ++k)
- {
- T root_x = sqrt(xn);
- T root_y = sqrt(yn);
- T root_z = sqrt(zn);
- T lambda = root_x * root_y + root_x * root_z + root_y * root_z;
- An = (An + lambda) / 4;
- xn = (xn + lambda) / 4;
- yn = (yn + lambda) / 4;
- zn = (zn + lambda) / 4;
- Q /= 4;
- fn *= 4;
- if(Q < fabs(An))
- break;
- }
- // Check to see if we gave up too soon:
- policies::check_series_iterations<T>(function, k, pol);
- BOOST_MATH_INSTRUMENT_VARIABLE(k);
- T X = (A0 - x) / (An * fn);
- T Y = (A0 - y) / (An * fn);
- T Z = -X - Y;
- // Taylor series expansion to the 7th order
- T E2 = X * Y - Z * Z;
- T E3 = X * Y * Z;
- return (1 + E3 * (T(1) / 14 + 3 * E3 / 104) + E2 * (T(-1) / 10 + E2 / 24 - (3 * E3) / 44 - 5 * E2 * E2 / 208 + E2 * E3 / 16)) / sqrt(An);
- }
- } // namespace detail
- template <class T1, class T2, class T3, class Policy>
- inline typename tools::promote_args<T1, T2, T3>::type
- ellint_rf(T1 x, T2 y, T3 z, const Policy& pol)
- {
- typedef typename tools::promote_args<T1, T2, T3>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- return policies::checked_narrowing_cast<result_type, Policy>(
- detail::ellint_rf_imp(
- static_cast<value_type>(x),
- static_cast<value_type>(y),
- static_cast<value_type>(z), pol), "boost::math::ellint_rf<%1%>(%1%,%1%,%1%)");
- }
- template <class T1, class T2, class T3>
- inline typename tools::promote_args<T1, T2, T3>::type
- ellint_rf(T1 x, T2 y, T3 z)
- {
- return ellint_rf(x, y, z, policies::policy<>());
- }
- }} // namespaces
- #endif // BOOST_MATH_ELLINT_RF_HPP
|