123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549 |
- // Copyright John Maddock 2007.
- // Copyright Paul A. Bristow 2007
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_SF_DETAIL_INV_T_HPP
- #define BOOST_MATH_SF_DETAIL_INV_T_HPP
- #ifdef _MSC_VER
- #pragma once
- #endif
- #include <boost/math/special_functions/cbrt.hpp>
- #include <boost/math/special_functions/round.hpp>
- #include <boost/math/special_functions/trunc.hpp>
- namespace boost{ namespace math{ namespace detail{
- //
- // The main method used is due to Hill:
- //
- // G. W. Hill, Algorithm 396, Student's t-Quantiles,
- // Communications of the ACM, 13(10): 619-620, Oct., 1970.
- //
- template <class T, class Policy>
- T inverse_students_t_hill(T ndf, T u, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- BOOST_MATH_ASSERT(u <= 0.5);
- T a, b, c, d, q, x, y;
- if (ndf > 1e20f)
- return -boost::math::erfc_inv(2 * u, pol) * constants::root_two<T>();
- a = 1 / (ndf - 0.5f);
- b = 48 / (a * a);
- c = ((20700 * a / b - 98) * a - 16) * a + 96.36f;
- d = ((94.5f / (b + c) - 3) / b + 1) * sqrt(a * constants::pi<T>() / 2) * ndf;
- y = pow(d * 2 * u, 2 / ndf);
- if (y > (0.05f + a))
- {
- //
- // Asymptotic inverse expansion about normal:
- //
- x = -boost::math::erfc_inv(2 * u, pol) * constants::root_two<T>();
- y = x * x;
- if (ndf < 5)
- c += 0.3f * (ndf - 4.5f) * (x + 0.6f);
- c += (((0.05f * d * x - 5) * x - 7) * x - 2) * x + b;
- y = (((((0.4f * y + 6.3f) * y + 36) * y + 94.5f) / c - y - 3) / b + 1) * x;
- y = boost::math::expm1(a * y * y, pol);
- }
- else
- {
- y = static_cast<T>(((1 / (((ndf + 6) / (ndf * y) - 0.089f * d - 0.822f)
- * (ndf + 2) * 3) + 0.5 / (ndf + 4)) * y - 1)
- * (ndf + 1) / (ndf + 2) + 1 / y);
- }
- q = sqrt(ndf * y);
- return -q;
- }
- //
- // Tail and body series are due to Shaw:
- //
- // www.mth.kcl.ac.uk/~shaww/web_page/papers/Tdistribution06.pdf
- //
- // Shaw, W.T., 2006, "Sampling Student's T distribution - use of
- // the inverse cumulative distribution function."
- // Journal of Computational Finance, Vol 9 Issue 4, pp 37-73, Summer 2006
- //
- template <class T, class Policy>
- T inverse_students_t_tail_series(T df, T v, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- // Tail series expansion, see section 6 of Shaw's paper.
- // w is calculated using Eq 60:
- T w = boost::math::tgamma_delta_ratio(df / 2, constants::half<T>(), pol)
- * sqrt(df * constants::pi<T>()) * v;
- // define some variables:
- T np2 = df + 2;
- T np4 = df + 4;
- T np6 = df + 6;
- //
- // Calculate the coefficients d(k), these depend only on the
- // number of degrees of freedom df, so at least in theory
- // we could tabulate these for fixed df, see p15 of Shaw:
- //
- T d[7] = { 1, };
- d[1] = -(df + 1) / (2 * np2);
- np2 *= (df + 2);
- d[2] = -df * (df + 1) * (df + 3) / (8 * np2 * np4);
- np2 *= df + 2;
- d[3] = -df * (df + 1) * (df + 5) * (((3 * df) + 7) * df -2) / (48 * np2 * np4 * np6);
- np2 *= (df + 2);
- np4 *= (df + 4);
- d[4] = -df * (df + 1) * (df + 7) *
- ( (((((15 * df) + 154) * df + 465) * df + 286) * df - 336) * df + 64 )
- / (384 * np2 * np4 * np6 * (df + 8));
- np2 *= (df + 2);
- d[5] = -df * (df + 1) * (df + 3) * (df + 9)
- * (((((((35 * df + 452) * df + 1573) * df + 600) * df - 2020) * df) + 928) * df -128)
- / (1280 * np2 * np4 * np6 * (df + 8) * (df + 10));
- np2 *= (df + 2);
- np4 *= (df + 4);
- np6 *= (df + 6);
- d[6] = -df * (df + 1) * (df + 11)
- * ((((((((((((945 * df) + 31506) * df + 425858) * df + 2980236) * df + 11266745) * df + 20675018) * df + 7747124) * df - 22574632) * df - 8565600) * df + 18108416) * df - 7099392) * df + 884736)
- / (46080 * np2 * np4 * np6 * (df + 8) * (df + 10) * (df +12));
- //
- // Now bring everything together to provide the result,
- // this is Eq 62 of Shaw:
- //
- T rn = sqrt(df);
- T div = pow(rn * w, 1 / df);
- T power = div * div;
- T result = tools::evaluate_polynomial<7, T, T>(d, power);
- result *= rn;
- result /= div;
- return -result;
- }
- template <class T, class Policy>
- T inverse_students_t_body_series(T df, T u, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- //
- // Body series for small N:
- //
- // Start with Eq 56 of Shaw:
- //
- T v = boost::math::tgamma_delta_ratio(df / 2, constants::half<T>(), pol)
- * sqrt(df * constants::pi<T>()) * (u - constants::half<T>());
- //
- // Workspace for the polynomial coefficients:
- //
- T c[11] = { 0, 1, };
- //
- // Figure out what the coefficients are, note these depend
- // only on the degrees of freedom (Eq 57 of Shaw):
- //
- T in = 1 / df;
- c[2] = static_cast<T>(0.16666666666666666667 + 0.16666666666666666667 * in);
- c[3] = static_cast<T>((0.0083333333333333333333 * in
- + 0.066666666666666666667) * in
- + 0.058333333333333333333);
- c[4] = static_cast<T>(((0.00019841269841269841270 * in
- + 0.0017857142857142857143) * in
- + 0.026785714285714285714) * in
- + 0.025198412698412698413);
- c[5] = static_cast<T>((((2.7557319223985890653e-6 * in
- + 0.00037477954144620811287) * in
- - 0.0011078042328042328042) * in
- + 0.010559964726631393298) * in
- + 0.012039792768959435626);
- c[6] = static_cast<T>(((((2.5052108385441718775e-8 * in
- - 0.000062705427288760622094) * in
- + 0.00059458674042007375341) * in
- - 0.0016095979637646304313) * in
- + 0.0061039211560044893378) * in
- + 0.0038370059724226390893);
- c[7] = static_cast<T>((((((1.6059043836821614599e-10 * in
- + 0.000015401265401265401265) * in
- - 0.00016376804137220803887) * in
- + 0.00069084207973096861986) * in
- - 0.0012579159844784844785) * in
- + 0.0010898206731540064873) * in
- + 0.0032177478835464946576);
- c[8] = static_cast<T>(((((((7.6471637318198164759e-13 * in
- - 3.9851014346715404916e-6) * in
- + 0.000049255746366361445727) * in
- - 0.00024947258047043099953) * in
- + 0.00064513046951456342991) * in
- - 0.00076245135440323932387) * in
- + 0.000033530976880017885309) * in
- + 0.0017438262298340009980);
- c[9] = static_cast<T>((((((((2.8114572543455207632e-15 * in
- + 1.0914179173496789432e-6) * in
- - 0.000015303004486655377567) * in
- + 0.000090867107935219902229) * in
- - 0.00029133414466938067350) * in
- + 0.00051406605788341121363) * in
- - 0.00036307660358786885787) * in
- - 0.00031101086326318780412) * in
- + 0.00096472747321388644237);
- c[10] = static_cast<T>(((((((((8.2206352466243297170e-18 * in
- - 3.1239569599829868045e-7) * in
- + 4.8903045291975346210e-6) * in
- - 0.000033202652391372058698) * in
- + 0.00012645437628698076975) * in
- - 0.00028690924218514613987) * in
- + 0.00035764655430568632777) * in
- - 0.00010230378073700412687) * in
- - 0.00036942667800009661203) * in
- + 0.00054229262813129686486);
- //
- // The result is then a polynomial in v (see Eq 56 of Shaw):
- //
- return tools::evaluate_odd_polynomial<11, T, T>(c, v);
- }
- template <class T, class Policy>
- T inverse_students_t(T df, T u, T v, const Policy& pol, bool* pexact = nullptr)
- {
- //
- // df = number of degrees of freedom.
- // u = probability.
- // v = 1 - u.
- // l = lanczos type to use.
- //
- BOOST_MATH_STD_USING
- bool invert = false;
- T result = 0;
- if(pexact)
- *pexact = false;
- if(u > v)
- {
- // function is symmetric, invert it:
- std::swap(u, v);
- invert = true;
- }
- if((floor(df) == df) && (df < 20))
- {
- //
- // we have integer degrees of freedom, try for the special
- // cases first:
- //
- T tolerance = ldexp(1.0f, (2 * policies::digits<T, Policy>()) / 3);
- switch(itrunc(df, Policy()))
- {
- case 1:
- {
- //
- // df = 1 is the same as the Cauchy distribution, see
- // Shaw Eq 35:
- //
- if(u == 0.5)
- result = 0;
- else
- result = -cos(constants::pi<T>() * u) / sin(constants::pi<T>() * u);
- if(pexact)
- *pexact = true;
- break;
- }
- case 2:
- {
- //
- // df = 2 has an exact result, see Shaw Eq 36:
- //
- result =(2 * u - 1) / sqrt(2 * u * v);
- if(pexact)
- *pexact = true;
- break;
- }
- case 4:
- {
- //
- // df = 4 has an exact result, see Shaw Eq 38 & 39:
- //
- T alpha = 4 * u * v;
- T root_alpha = sqrt(alpha);
- T r = 4 * cos(acos(root_alpha) / 3) / root_alpha;
- T x = sqrt(r - 4);
- result = u - 0.5f < 0 ? (T)-x : x;
- if(pexact)
- *pexact = true;
- break;
- }
- case 6:
- {
- //
- // We get numeric overflow in this area:
- //
- if(u < 1e-150)
- return (invert ? -1 : 1) * inverse_students_t_hill(df, u, pol);
- //
- // Newton-Raphson iteration of a polynomial case,
- // choice of seed value is taken from Shaw's online
- // supplement:
- //
- T a = 4 * (u - u * u);//1 - 4 * (u - 0.5f) * (u - 0.5f);
- T b = boost::math::cbrt(a, pol);
- static const T c = static_cast<T>(0.85498797333834849467655443627193);
- T p = 6 * (1 + c * (1 / b - 1));
- T p0;
- do{
- T p2 = p * p;
- T p4 = p2 * p2;
- T p5 = p * p4;
- p0 = p;
- // next term is given by Eq 41:
- p = 2 * (8 * a * p5 - 270 * p2 + 2187) / (5 * (4 * a * p4 - 216 * p - 243));
- }while(fabs((p - p0) / p) > tolerance);
- //
- // Use Eq 45 to extract the result:
- //
- p = sqrt(p - df);
- result = (u - 0.5f) < 0 ? (T)-p : p;
- break;
- }
- #if 0
- //
- // These are Shaw's "exact" but iterative solutions
- // for even df, the numerical accuracy of these is
- // rather less than Hill's method, so these are disabled
- // for now, which is a shame because they are reasonably
- // quick to evaluate...
- //
- case 8:
- {
- //
- // Newton-Raphson iteration of a polynomial case,
- // choice of seed value is taken from Shaw's online
- // supplement:
- //
- static const T c8 = 0.85994765706259820318168359251872L;
- T a = 4 * (u - u * u); //1 - 4 * (u - 0.5f) * (u - 0.5f);
- T b = pow(a, T(1) / 4);
- T p = 8 * (1 + c8 * (1 / b - 1));
- T p0 = p;
- do{
- T p5 = p * p;
- p5 *= p5 * p;
- p0 = p;
- // Next term is given by Eq 42:
- p = 2 * (3 * p + (640 * (160 + p * (24 + p * (p + 4)))) / (-5120 + p * (-2048 - 960 * p + a * p5))) / 7;
- }while(fabs((p - p0) / p) > tolerance);
- //
- // Use Eq 45 to extract the result:
- //
- p = sqrt(p - df);
- result = (u - 0.5f) < 0 ? -p : p;
- break;
- }
- case 10:
- {
- //
- // Newton-Raphson iteration of a polynomial case,
- // choice of seed value is taken from Shaw's online
- // supplement:
- //
- static const T c10 = 0.86781292867813396759105692122285L;
- T a = 4 * (u - u * u); //1 - 4 * (u - 0.5f) * (u - 0.5f);
- T b = pow(a, T(1) / 5);
- T p = 10 * (1 + c10 * (1 / b - 1));
- T p0;
- do{
- T p6 = p * p;
- p6 *= p6 * p6;
- p0 = p;
- // Next term given by Eq 43:
- p = (8 * p) / 9 + (218750 * (21875 + 4 * p * (625 + p * (75 + 2 * p * (5 + p))))) /
- (9 * (-68359375 + 8 * p * (-2343750 + p * (-546875 - 175000 * p + 8 * a * p6))));
- }while(fabs((p - p0) / p) > tolerance);
- //
- // Use Eq 45 to extract the result:
- //
- p = sqrt(p - df);
- result = (u - 0.5f) < 0 ? -p : p;
- break;
- }
- #endif
- default:
- goto calculate_real;
- }
- }
- else
- {
- calculate_real:
- if(df > 0x10000000)
- {
- result = -boost::math::erfc_inv(2 * u, pol) * constants::root_two<T>();
- if((pexact) && (df >= 1e20))
- *pexact = true;
- }
- else if(df < 3)
- {
- //
- // Use a roughly linear scheme to choose between Shaw's
- // tail series and body series:
- //
- T crossover = 0.2742f - df * 0.0242143f;
- if(u > crossover)
- {
- result = boost::math::detail::inverse_students_t_body_series(df, u, pol);
- }
- else
- {
- result = boost::math::detail::inverse_students_t_tail_series(df, u, pol);
- }
- }
- else
- {
- //
- // Use Hill's method except in the extreme tails
- // where we use Shaw's tail series.
- // The crossover point is roughly exponential in -df:
- //
- T crossover = ldexp(1.0f, iround(T(df / -0.654f), typename policies::normalise<Policy, policies::rounding_error<policies::ignore_error> >::type()));
- if(u > crossover)
- {
- result = boost::math::detail::inverse_students_t_hill(df, u, pol);
- }
- else
- {
- result = boost::math::detail::inverse_students_t_tail_series(df, u, pol);
- }
- }
- }
- return invert ? (T)-result : result;
- }
- template <class T, class Policy>
- inline T find_ibeta_inv_from_t_dist(T a, T p, T /*q*/, T* py, const Policy& pol)
- {
- T u = p / 2;
- T v = 1 - u;
- T df = a * 2;
- T t = boost::math::detail::inverse_students_t(df, u, v, pol);
- *py = t * t / (df + t * t);
- return df / (df + t * t);
- }
- template <class T, class Policy>
- inline T fast_students_t_quantile_imp(T df, T p, const Policy& pol, const std::false_type*)
- {
- BOOST_MATH_STD_USING
- //
- // Need to use inverse incomplete beta to get
- // required precision so not so fast:
- //
- T probability = (p > 0.5) ? 1 - p : p;
- T t, x, y(0);
- x = ibeta_inv(df / 2, T(0.5), 2 * probability, &y, pol);
- if(df * y > tools::max_value<T>() * x)
- t = policies::raise_overflow_error<T>("boost::math::students_t_quantile<%1%>(%1%,%1%)", nullptr, pol);
- else
- t = sqrt(df * y / x);
- //
- // Figure out sign based on the size of p:
- //
- if(p < 0.5)
- t = -t;
- return t;
- }
- template <class T, class Policy>
- T fast_students_t_quantile_imp(T df, T p, const Policy& pol, const std::true_type*)
- {
- BOOST_MATH_STD_USING
- bool invert = false;
- if((df < 2) && (floor(df) != df))
- return boost::math::detail::fast_students_t_quantile_imp(df, p, pol, static_cast<std::false_type*>(nullptr));
- if(p > 0.5)
- {
- p = 1 - p;
- invert = true;
- }
- //
- // Get an estimate of the result:
- //
- bool exact;
- T t = inverse_students_t(df, p, T(1-p), pol, &exact);
- if((t == 0) || exact)
- return invert ? -t : t; // can't do better!
- //
- // Change variables to inverse incomplete beta:
- //
- T t2 = t * t;
- T xb = df / (df + t2);
- T y = t2 / (df + t2);
- T a = df / 2;
- //
- // t can be so large that x underflows,
- // just return our estimate in that case:
- //
- if(xb == 0)
- return t;
- //
- // Get incomplete beta and it's derivative:
- //
- T f1;
- T f0 = xb < y ? ibeta_imp(a, constants::half<T>(), xb, pol, false, true, &f1)
- : ibeta_imp(constants::half<T>(), a, y, pol, true, true, &f1);
- // Get cdf from incomplete beta result:
- T p0 = f0 / 2 - p;
- // Get pdf from derivative:
- T p1 = f1 * sqrt(y * xb * xb * xb / df);
- //
- // Second derivative divided by p1:
- //
- // yacas gives:
- //
- // In> PrettyForm(Simplify(D(t) (1 + t^2/v) ^ (-(v+1)/2)))
- //
- // | | v + 1 | |
- // | -| ----- + 1 | |
- // | | 2 | |
- // -| | 2 | |
- // | | t | |
- // | | -- + 1 | |
- // | ( v + 1 ) * | v | * t |
- // ---------------------------------------------
- // v
- //
- // Which after some manipulation is:
- //
- // -p1 * t * (df + 1) / (t^2 + df)
- //
- T p2 = t * (df + 1) / (t * t + df);
- // Halley step:
- t = fabs(t);
- t += p0 / (p1 + p0 * p2 / 2);
- return !invert ? -t : t;
- }
- template <class T, class Policy>
- inline T fast_students_t_quantile(T df, T p, const Policy& pol)
- {
- typedef typename policies::evaluation<T, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- typedef std::integral_constant<bool,
- (std::numeric_limits<T>::digits <= 53)
- &&
- (std::numeric_limits<T>::is_specialized)
- &&
- (std::numeric_limits<T>::radix == 2)
- > tag_type;
- return policies::checked_narrowing_cast<T, forwarding_policy>(fast_students_t_quantile_imp(static_cast<value_type>(df), static_cast<value_type>(p), pol, static_cast<tag_type*>(nullptr)), "boost::math::students_t_quantile<%1%>(%1%,%1%,%1%)");
- }
- }}} // namespaces
- #endif // BOOST_MATH_SF_DETAIL_INV_T_HPP
|