polygamma.hpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560
  1. ///////////////////////////////////////////////////////////////////////////////
  2. // Copyright 2013 Nikhar Agrawal
  3. // Copyright 2013 Christopher Kormanyos
  4. // Copyright 2014 John Maddock
  5. // Copyright 2013 Paul Bristow
  6. // Distributed under the Boost
  7. // Software License, Version 1.0. (See accompanying file
  8. // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
  9. #ifndef _BOOST_POLYGAMMA_DETAIL_2013_07_30_HPP_
  10. #define _BOOST_POLYGAMMA_DETAIL_2013_07_30_HPP_
  11. #include <cmath>
  12. #include <limits>
  13. #include <string>
  14. #include <boost/math/policies/policy.hpp>
  15. #include <boost/math/special_functions/bernoulli.hpp>
  16. #include <boost/math/special_functions/trunc.hpp>
  17. #include <boost/math/special_functions/zeta.hpp>
  18. #include <boost/math/special_functions/digamma.hpp>
  19. #include <boost/math/special_functions/sin_pi.hpp>
  20. #include <boost/math/special_functions/cos_pi.hpp>
  21. #include <boost/math/special_functions/pow.hpp>
  22. #include <boost/math/tools/assert.hpp>
  23. #include <boost/math/tools/config.hpp>
  24. #ifdef BOOST_MATH_HAS_THREADS
  25. #include <mutex>
  26. #endif
  27. #ifdef _MSC_VER
  28. #pragma once
  29. #pragma warning(push)
  30. #pragma warning(disable:4702) // Unreachable code (release mode only warning)
  31. #endif
  32. namespace boost { namespace math { namespace detail{
  33. template<class T, class Policy>
  34. T polygamma_atinfinityplus(const int n, const T& x, const Policy& pol, const char* function) // for large values of x such as for x> 400
  35. {
  36. // See http://functions.wolfram.com/GammaBetaErf/PolyGamma2/06/02/0001/
  37. BOOST_MATH_STD_USING
  38. //
  39. // sum == current value of accumulated sum.
  40. // term == value of current term to be added to sum.
  41. // part_term == value of current term excluding the Bernoulli number part
  42. //
  43. if(n + x == x)
  44. {
  45. // x is crazy large, just concentrate on the first part of the expression and use logs:
  46. if(n == 1) return 1 / x;
  47. T nlx = n * log(x);
  48. if((nlx < tools::log_max_value<T>()) && (n < (int)max_factorial<T>::value))
  49. return ((n & 1) ? 1 : -1) * boost::math::factorial<T>(n - 1, pol) * static_cast<T>(pow(x, T(-n)));
  50. else
  51. return ((n & 1) ? 1 : -1) * exp(boost::math::lgamma(T(n), pol) - n * log(x));
  52. }
  53. T term, sum, part_term;
  54. T x_squared = x * x;
  55. //
  56. // Start by setting part_term to:
  57. //
  58. // (n-1)! / x^(n+1)
  59. //
  60. // which is common to both the first term of the series (with k = 1)
  61. // and to the leading part.
  62. // We can then get to the leading term by:
  63. //
  64. // part_term * (n + 2 * x) / 2
  65. //
  66. // and to the first term in the series
  67. // (excluding the Bernoulli number) by:
  68. //
  69. // part_term n * (n + 1) / (2x)
  70. //
  71. // If either the factorial would overflow,
  72. // or the power term underflows, this just gets set to 0 and then we
  73. // know that we have to use logs for the initial terms:
  74. //
  75. part_term = ((n > (int)boost::math::max_factorial<T>::value) && (T(n) * n > tools::log_max_value<T>()))
  76. ? T(0) : static_cast<T>(boost::math::factorial<T>(n - 1, pol) * pow(x, T(-n - 1)));
  77. if(part_term == 0)
  78. {
  79. // Either n is very large, or the power term underflows,
  80. // set the initial values of part_term, term and sum via logs:
  81. part_term = static_cast<T>(T(boost::math::lgamma(n, pol)) - (n + 1) * log(x));
  82. sum = exp(part_term + log(n + 2 * x) - boost::math::constants::ln_two<T>());
  83. part_term += log(T(n) * (n + 1)) - boost::math::constants::ln_two<T>() - log(x);
  84. part_term = exp(part_term);
  85. }
  86. else
  87. {
  88. sum = part_term * (n + 2 * x) / 2;
  89. part_term *= (T(n) * (n + 1)) / 2;
  90. part_term /= x;
  91. }
  92. //
  93. // If the leading term is 0, so is the result:
  94. //
  95. if(sum == 0)
  96. return sum;
  97. for(unsigned k = 1;;)
  98. {
  99. term = part_term * boost::math::bernoulli_b2n<T>(k, pol);
  100. sum += term;
  101. //
  102. // Normal termination condition:
  103. //
  104. if(fabs(term / sum) < tools::epsilon<T>())
  105. break;
  106. //
  107. // Increment our counter, and move part_term on to the next value:
  108. //
  109. ++k;
  110. part_term *= T(n + 2 * k - 2) * (n - 1 + 2 * k);
  111. part_term /= (2 * k - 1) * 2 * k;
  112. part_term /= x_squared;
  113. //
  114. // Emergency get out termination condition:
  115. //
  116. if(k > policies::get_max_series_iterations<Policy>())
  117. {
  118. return policies::raise_evaluation_error(function, "Series did not converge, closest value was %1%", sum, pol);
  119. }
  120. }
  121. if((n - 1) & 1)
  122. sum = -sum;
  123. return sum;
  124. }
  125. template<class T, class Policy>
  126. T polygamma_attransitionplus(const int n, const T& x, const Policy& pol, const char* function)
  127. {
  128. // See: http://functions.wolfram.com/GammaBetaErf/PolyGamma2/16/01/01/0017/
  129. // Use N = (0.4 * digits) + (4 * n) for target value for x:
  130. BOOST_MATH_STD_USING
  131. const int d4d = static_cast<int>(0.4F * policies::digits_base10<T, Policy>());
  132. const int N = d4d + (4 * n);
  133. const int m = n;
  134. const int iter = N - itrunc(x);
  135. if(iter > (int)policies::get_max_series_iterations<Policy>())
  136. return policies::raise_evaluation_error<T>(function, ("Exceeded maximum series evaluations evaluating at n = " + std::to_string(n) + " and x = %1%").c_str(), x, pol);
  137. const int minus_m_minus_one = -m - 1;
  138. T z(x);
  139. T sum0(0);
  140. T z_plus_k_pow_minus_m_minus_one(0);
  141. // Forward recursion to larger x, need to check for overflow first though:
  142. if(log(z + iter) * minus_m_minus_one > -tools::log_max_value<T>())
  143. {
  144. for(int k = 1; k <= iter; ++k)
  145. {
  146. z_plus_k_pow_minus_m_minus_one = static_cast<T>(pow(z, T(minus_m_minus_one)));
  147. sum0 += z_plus_k_pow_minus_m_minus_one;
  148. z += 1;
  149. }
  150. sum0 *= boost::math::factorial<T>(n, pol);
  151. }
  152. else
  153. {
  154. for(int k = 1; k <= iter; ++k)
  155. {
  156. T log_term = log(z) * minus_m_minus_one + boost::math::lgamma(T(n + 1), pol);
  157. sum0 += exp(log_term);
  158. z += 1;
  159. }
  160. }
  161. if((n - 1) & 1)
  162. sum0 = -sum0;
  163. return sum0 + polygamma_atinfinityplus(n, z, pol, function);
  164. }
  165. template <class T, class Policy>
  166. T polygamma_nearzero(int n, T x, const Policy& pol, const char* function)
  167. {
  168. BOOST_MATH_STD_USING
  169. //
  170. // If we take this expansion for polygamma: http://functions.wolfram.com/06.15.06.0003.02
  171. // and substitute in this expression for polygamma(n, 1): http://functions.wolfram.com/06.15.03.0009.01
  172. // we get an alternating series for polygamma when x is small in terms of zeta functions of
  173. // integer arguments (which are easy to evaluate, at least when the integer is even).
  174. //
  175. // In order to avoid spurious overflow, save the n! term for later, and rescale at the end:
  176. //
  177. T scale = boost::math::factorial<T>(n, pol);
  178. //
  179. // "factorial_part" contains everything except the zeta function
  180. // evaluations in each term:
  181. //
  182. T factorial_part = 1;
  183. //
  184. // "prefix" is what we'll be adding the accumulated sum to, it will
  185. // be n! / z^(n+1), but since we're scaling by n! it's just
  186. // 1 / z^(n+1) for now:
  187. //
  188. T prefix = static_cast<T>(pow(x, T(n + 1))); // Warning supression: Integer power returns at least a double
  189. if(prefix == 0)
  190. return boost::math::policies::raise_overflow_error<T>(function, nullptr, pol);
  191. prefix = 1 / prefix;
  192. //
  193. // First term in the series is necessarily < zeta(2) < 2, so
  194. // ignore the sum if it will have no effect on the result anyway:
  195. //
  196. if(prefix > 2 / policies::get_epsilon<T, Policy>())
  197. return ((n & 1) ? 1 : -1) *
  198. (tools::max_value<T>() / prefix < scale ? policies::raise_overflow_error<T>(function, nullptr, pol) : prefix * scale);
  199. //
  200. // As this is an alternating series we could accelerate it using
  201. // "Convergence Acceleration of Alternating Series",
  202. // Henri Cohen, Fernando Rodriguez Villegas, and Don Zagier, Experimental Mathematics, 1999.
  203. // In practice however, it appears not to make any difference to the number of terms
  204. // required except in some edge cases which are filtered out anyway before we get here.
  205. //
  206. T sum = prefix;
  207. for(unsigned k = 0;;)
  208. {
  209. // Get the k'th term:
  210. T term = factorial_part * boost::math::zeta(T(k + n + 1), pol);
  211. sum += term;
  212. // Termination condition:
  213. if(fabs(term) < fabs(sum * boost::math::policies::get_epsilon<T, Policy>()))
  214. break;
  215. //
  216. // Move on k and factorial_part:
  217. //
  218. ++k;
  219. factorial_part *= (-x * (n + k)) / k;
  220. //
  221. // Last chance exit:
  222. //
  223. if(k > policies::get_max_series_iterations<Policy>())
  224. return policies::raise_evaluation_error<T>(function, "Series did not converge, best value is %1%", sum, pol);
  225. }
  226. //
  227. // We need to multiply by the scale, at each stage checking for overflow:
  228. //
  229. if(boost::math::tools::max_value<T>() / scale < sum)
  230. return boost::math::policies::raise_overflow_error<T>(function, nullptr, pol);
  231. sum *= scale;
  232. return n & 1 ? sum : T(-sum);
  233. }
  234. //
  235. // Helper function which figures out which slot our coefficient is in
  236. // given an angle multiplier for the cosine term of power:
  237. //
  238. template <class Table>
  239. typename Table::value_type::reference dereference_table(Table& table, unsigned row, unsigned power)
  240. {
  241. return table[row][power / 2];
  242. }
  243. template <class T, class Policy>
  244. T poly_cot_pi(int n, T x, T xc, const Policy& pol, const char* function)
  245. {
  246. BOOST_MATH_STD_USING
  247. // Return n'th derivative of cot(pi*x) at x, these are simply
  248. // tabulated for up to n = 9, beyond that it is possible to
  249. // calculate coefficients as follows:
  250. //
  251. // The general form of each derivative is:
  252. //
  253. // pi^n * SUM{k=0, n} C[k,n] * cos^k(pi * x) * csc^(n+1)(pi * x)
  254. //
  255. // With constant C[0,1] = -1 and all other C[k,n] = 0;
  256. // Then for each k < n+1:
  257. // C[k-1, n+1] -= k * C[k, n];
  258. // C[k+1, n+1] += (k-n-1) * C[k, n];
  259. //
  260. // Note that there are many different ways of representing this derivative thanks to
  261. // the many trigonometric identies available. In particular, the sum of powers of
  262. // cosines could be replaced by a sum of cosine multiple angles, and indeed if you
  263. // plug the derivative into Mathematica this is the form it will give. The two
  264. // forms are related via the Chebeshev polynomials of the first kind and
  265. // T_n(cos(x)) = cos(n x). The polynomial form has the great advantage that
  266. // all the cosine terms are zero at half integer arguments - right where this
  267. // function has it's minimum - thus avoiding cancellation error in this region.
  268. //
  269. // And finally, since every other term in the polynomials is zero, we can save
  270. // space by only storing the non-zero terms. This greatly complexifies
  271. // subscripting the tables in the calculation, but halves the storage space
  272. // (and complexity for that matter).
  273. //
  274. T s = fabs(x) < fabs(xc) ? boost::math::sin_pi(x, pol) : boost::math::sin_pi(xc, pol);
  275. T c = boost::math::cos_pi(x, pol);
  276. switch(n)
  277. {
  278. case 1:
  279. return -constants::pi<T, Policy>() / (s * s);
  280. case 2:
  281. {
  282. return 2 * constants::pi<T, Policy>() * constants::pi<T, Policy>() * c / boost::math::pow<3>(s, pol);
  283. }
  284. case 3:
  285. {
  286. constexpr int P[] = { -2, -4 };
  287. return boost::math::pow<3>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<4>(s, pol);
  288. }
  289. case 4:
  290. {
  291. constexpr int P[] = { 16, 8 };
  292. return boost::math::pow<4>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<5>(s, pol);
  293. }
  294. case 5:
  295. {
  296. constexpr int P[] = { -16, -88, -16 };
  297. return boost::math::pow<5>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<6>(s, pol);
  298. }
  299. case 6:
  300. {
  301. constexpr int P[] = { 272, 416, 32 };
  302. return boost::math::pow<6>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<7>(s, pol);
  303. }
  304. case 7:
  305. {
  306. constexpr int P[] = { -272, -2880, -1824, -64 };
  307. return boost::math::pow<7>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<8>(s, pol);
  308. }
  309. case 8:
  310. {
  311. constexpr int P[] = { 7936, 24576, 7680, 128 };
  312. return boost::math::pow<8>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<9>(s, pol);
  313. }
  314. case 9:
  315. {
  316. constexpr int P[] = { -7936, -137216, -185856, -31616, -256 };
  317. return boost::math::pow<9>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<10>(s, pol);
  318. }
  319. case 10:
  320. {
  321. constexpr int P[] = { 353792, 1841152, 1304832, 128512, 512 };
  322. return boost::math::pow<10>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<11>(s, pol);
  323. }
  324. case 11:
  325. {
  326. constexpr int P[] = { -353792, -9061376, -21253376, -8728576, -518656, -1024};
  327. return boost::math::pow<11>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<12>(s, pol);
  328. }
  329. case 12:
  330. {
  331. constexpr int P[] = { 22368256, 175627264, 222398464, 56520704, 2084864, 2048 };
  332. return boost::math::pow<12>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<13>(s, pol);
  333. }
  334. #ifndef BOOST_NO_LONG_LONG
  335. case 13:
  336. {
  337. constexpr long long P[] = { -22368256LL, -795300864LL, -2868264960LL, -2174832640LL, -357888000LL, -8361984LL, -4096 };
  338. return boost::math::pow<13>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<14>(s, pol);
  339. }
  340. case 14:
  341. {
  342. constexpr long long P[] = { 1903757312LL, 21016670208LL, 41731645440LL, 20261765120LL, 2230947840LL, 33497088LL, 8192 };
  343. return boost::math::pow<14>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<15>(s, pol);
  344. }
  345. case 15:
  346. {
  347. constexpr long long P[] = { -1903757312LL, -89702612992LL, -460858269696LL, -559148810240LL, -182172651520LL, -13754155008LL, -134094848LL, -16384 };
  348. return boost::math::pow<15>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<16>(s, pol);
  349. }
  350. case 16:
  351. {
  352. constexpr long long P[] = { 209865342976LL, 3099269660672LL, 8885192097792LL, 7048869314560LL, 1594922762240LL, 84134068224LL, 536608768LL, 32768 };
  353. return boost::math::pow<16>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<17>(s, pol);
  354. }
  355. case 17:
  356. {
  357. constexpr long long P[] = { -209865342976LL, -12655654469632LL, -87815735738368LL, -155964390375424LL, -84842998005760LL, -13684856848384LL, -511780323328LL, -2146926592LL, -65536 };
  358. return boost::math::pow<17>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<18>(s, pol);
  359. }
  360. case 18:
  361. {
  362. constexpr long long P[] = { 29088885112832LL, 553753414467584LL, 2165206642589696LL, 2550316668551168LL, 985278548541440LL, 115620218667008LL, 3100738912256LL, 8588754944LL, 131072 };
  363. return boost::math::pow<18>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<19>(s, pol);
  364. }
  365. case 19:
  366. {
  367. constexpr long long P[] = { -29088885112832LL, -2184860175433728LL, -19686087844429824LL, -48165109676113920LL, -39471306959486976LL, -11124607890751488LL, -965271355195392LL, -18733264797696LL, -34357248000LL, -262144 };
  368. return boost::math::pow<19>(constants::pi<T, Policy>(), pol) * tools::evaluate_even_polynomial(P, c) / boost::math::pow<20>(s, pol);
  369. }
  370. case 20:
  371. {
  372. constexpr long long P[] = { 4951498053124096LL, 118071834535526400LL, 603968063567560704LL, 990081991141490688LL, 584901762421358592LL, 122829335169859584LL, 7984436548730880LL, 112949304754176LL, 137433710592LL, 524288 };
  373. return boost::math::pow<20>(constants::pi<T, Policy>(), pol) * c * tools::evaluate_even_polynomial(P, c) / boost::math::pow<21>(s, pol);
  374. }
  375. #endif
  376. }
  377. //
  378. // We'll have to compute the coefficients up to n,
  379. // complexity is O(n^2) which we don't worry about for now
  380. // as the values are computed once and then cached.
  381. // However, if the final evaluation would have too many
  382. // terms just bail out right away:
  383. //
  384. if((unsigned)n / 2u > policies::get_max_series_iterations<Policy>())
  385. return policies::raise_evaluation_error<T>(function, "The value of n is so large that we're unable to compute the result in reasonable time, best guess is %1%", 0, pol);
  386. #ifdef BOOST_MATH_HAS_THREADS
  387. static std::mutex m;
  388. std::lock_guard<std::mutex> l(m);
  389. #endif
  390. static int digits = tools::digits<T>();
  391. static std::vector<std::vector<T> > table(1, std::vector<T>(1, T(-1)));
  392. int current_digits = tools::digits<T>();
  393. if(digits != current_digits)
  394. {
  395. // Oh my... our precision has changed!
  396. table = std::vector<std::vector<T> >(1, std::vector<T>(1, T(-1)));
  397. digits = current_digits;
  398. }
  399. int index = n - 1;
  400. if(index >= (int)table.size())
  401. {
  402. for(int i = (int)table.size() - 1; i < index; ++i)
  403. {
  404. int offset = i & 1; // 1 if the first cos power is 0, otherwise 0.
  405. int sin_order = i + 2; // order of the sin term
  406. int max_cos_order = sin_order - 1; // largest order of the polynomial of cos terms
  407. int max_columns = (max_cos_order - offset) / 2; // How many entries there are in the current row.
  408. int next_offset = offset ? 0 : 1;
  409. int next_max_columns = (max_cos_order + 1 - next_offset) / 2; // How many entries there will be in the next row
  410. table.push_back(std::vector<T>(next_max_columns + 1, T(0)));
  411. for(int column = 0; column <= max_columns; ++column)
  412. {
  413. int cos_order = 2 * column + offset; // order of the cosine term in entry "column"
  414. BOOST_MATH_ASSERT(column < (int)table[i].size());
  415. BOOST_MATH_ASSERT((cos_order + 1) / 2 < (int)table[i + 1].size());
  416. table[i + 1][(cos_order + 1) / 2] += ((cos_order - sin_order) * table[i][column]) / (sin_order - 1);
  417. if(cos_order)
  418. table[i + 1][(cos_order - 1) / 2] += (-cos_order * table[i][column]) / (sin_order - 1);
  419. }
  420. }
  421. }
  422. T sum = boost::math::tools::evaluate_even_polynomial(&table[index][0], c, table[index].size());
  423. if(index & 1)
  424. sum *= c; // First coefficient is order 1, and really an odd polynomial.
  425. if(sum == 0)
  426. return sum;
  427. //
  428. // The remaining terms are computed using logs since the powers and factorials
  429. // get real large real quick:
  430. //
  431. T power_terms = n * log(boost::math::constants::pi<T>());
  432. if(s == 0)
  433. return sum * boost::math::policies::raise_overflow_error<T>(function, nullptr, pol);
  434. power_terms -= log(fabs(s)) * (n + 1);
  435. power_terms += boost::math::lgamma(T(n), pol);
  436. power_terms += log(fabs(sum));
  437. if(power_terms > boost::math::tools::log_max_value<T>())
  438. return sum * boost::math::policies::raise_overflow_error<T>(function, nullptr, pol);
  439. return exp(power_terms) * ((s < 0) && ((n + 1) & 1) ? -1 : 1) * boost::math::sign(sum);
  440. }
  441. template <class T, class Policy>
  442. struct polygamma_initializer
  443. {
  444. struct init
  445. {
  446. init()
  447. {
  448. // Forces initialization of our table of coefficients and mutex:
  449. boost::math::polygamma(30, T(-2.5f), Policy());
  450. }
  451. void force_instantiate()const{}
  452. };
  453. static const init initializer;
  454. static void force_instantiate()
  455. {
  456. initializer.force_instantiate();
  457. }
  458. };
  459. template <class T, class Policy>
  460. const typename polygamma_initializer<T, Policy>::init polygamma_initializer<T, Policy>::initializer;
  461. template<class T, class Policy>
  462. inline T polygamma_imp(const int n, T x, const Policy &pol)
  463. {
  464. BOOST_MATH_STD_USING
  465. static const char* function = "boost::math::polygamma<%1%>(int, %1%)";
  466. polygamma_initializer<T, Policy>::initializer.force_instantiate();
  467. if(n < 0)
  468. return policies::raise_domain_error<T>(function, "Order must be >= 0, but got %1%", static_cast<T>(n), pol);
  469. if(x < 0)
  470. {
  471. if(floor(x) == x)
  472. {
  473. //
  474. // Result is infinity if x is odd, and a pole error if x is even.
  475. //
  476. if(lltrunc(x) & 1)
  477. return policies::raise_overflow_error<T>(function, nullptr, pol);
  478. else
  479. return policies::raise_pole_error<T>(function, "Evaluation at negative integer %1%", x, pol);
  480. }
  481. T z = 1 - x;
  482. T result = polygamma_imp(n, z, pol) + constants::pi<T, Policy>() * poly_cot_pi(n, z, x, pol, function);
  483. return n & 1 ? T(-result) : result;
  484. }
  485. //
  486. // Limit for use of small-x-series is chosen
  487. // so that the series doesn't go too divergent
  488. // in the first few terms. Ordinarily this
  489. // would mean setting the limit to ~ 1 / n,
  490. // but we can tolerate a small amount of divergence:
  491. //
  492. T small_x_limit = (std::min)(T(T(5) / n), T(0.25f));
  493. if(x < small_x_limit)
  494. {
  495. return polygamma_nearzero(n, x, pol, function);
  496. }
  497. else if(x > 0.4F * policies::digits_base10<T, Policy>() + 4.0f * n)
  498. {
  499. return polygamma_atinfinityplus(n, x, pol, function);
  500. }
  501. else if(x == 1)
  502. {
  503. return (n & 1 ? 1 : -1) * boost::math::factorial<T>(n, pol) * boost::math::zeta(T(n + 1), pol);
  504. }
  505. else if(x == 0.5f)
  506. {
  507. T result = (n & 1 ? 1 : -1) * boost::math::factorial<T>(n, pol) * boost::math::zeta(T(n + 1), pol);
  508. if(fabs(result) >= ldexp(tools::max_value<T>(), -n - 1))
  509. return boost::math::sign(result) * policies::raise_overflow_error<T>(function, nullptr, pol);
  510. result *= ldexp(T(1), n + 1) - 1;
  511. return result;
  512. }
  513. else
  514. {
  515. return polygamma_attransitionplus(n, x, pol, function);
  516. }
  517. }
  518. } } } // namespace boost::math::detail
  519. #ifdef _MSC_VER
  520. #pragma warning(pop)
  521. #endif
  522. #endif // _BOOST_POLYGAMMA_DETAIL_2013_07_30_HPP_