123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 |
- ///////////////////////////////////////////////////////////////////////////////
- // Copyright 2017 John Maddock
- // Distributed under the Boost
- // Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- //
- #ifndef BOOST_MATH_HYPERGEOMETRIC_1F1_SCALED_SERIES_HPP
- #define BOOST_MATH_HYPERGEOMETRIC_1F1_SCALED_SERIES_HPP
- #include <array>
- #include <cstdint>
- namespace boost{ namespace math{ namespace detail{
- template <class T, class Policy>
- T hypergeometric_1F1_scaled_series(const T& a, const T& b, T z, const Policy& pol, const char* function)
- {
- BOOST_MATH_STD_USING
- //
- // Result is returned scaled by e^-z.
- // Whenever the terms start becoming too large, we scale by some factor e^-n
- // and keep track of the integer scaling factor n. At the end we can perform
- // an exact subtraction of n from z and scale the result:
- //
- T sum(0), term(1), upper_limit(sqrt(boost::math::tools::max_value<T>())), diff;
- unsigned n = 0;
- long long log_scaling_factor = 1 - lltrunc(boost::math::tools::log_max_value<T>());
- T scaling_factor = exp(T(log_scaling_factor));
- std::intmax_t current_scaling = 0;
- do
- {
- sum += term;
- if (sum >= upper_limit)
- {
- sum *= scaling_factor;
- term *= scaling_factor;
- current_scaling += log_scaling_factor;
- }
- term *= (((a + n) / ((b + n) * (n + 1))) * z);
- if (n > boost::math::policies::get_max_series_iterations<Policy>())
- return boost::math::policies::raise_evaluation_error(function, "Series did not converge, best value is %1%", sum, pol);
- ++n;
- diff = fabs(term / sum);
- } while (diff > boost::math::policies::get_epsilon<T, Policy>());
- z = -z - current_scaling;
- while (z < log_scaling_factor)
- {
- z -= log_scaling_factor;
- sum *= scaling_factor;
- }
- return sum * exp(z);
- }
- } } } // namespaces
- #endif // BOOST_MATH_HYPERGEOMETRIC_1F1_SCALED_SERIES_HPP
|