123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522 |
- ///////////////////////////////////////////////////////////////////////////////
- // Copyright 2014 Anton Bikineev
- // Copyright 2014 Christopher Kormanyos
- // Copyright 2014 John Maddock
- // Copyright 2014 Paul Bristow
- // Distributed under the Boost
- // Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_HYPERGEOMETRIC_1F1_RECURRENCE_HPP_
- #define BOOST_HYPERGEOMETRIC_1F1_RECURRENCE_HPP_
- #include <boost/math/special_functions/modf.hpp>
- #include <boost/math/special_functions/next.hpp>
- #include <boost/math/tools/recurrence.hpp>
- #include <boost/math/special_functions/detail/hypergeometric_pFq_checked_series.hpp>
- namespace boost { namespace math { namespace detail {
- // forward declaration for initial values
- template <class T, class Policy>
- inline T hypergeometric_1F1_imp(const T& a, const T& b, const T& z, const Policy& pol);
- template <class T, class Policy>
- inline T hypergeometric_1F1_imp(const T& a, const T& b, const T& z, const Policy& pol, long long& log_scaling);
- template <class T>
- struct hypergeometric_1F1_recurrence_a_coefficients
- {
- using result_type = boost::math::tuple<T, T, T>;
- hypergeometric_1F1_recurrence_a_coefficients(const T& a, const T& b, const T& z):
- a(a), b(b), z(z)
- {
- }
- hypergeometric_1F1_recurrence_a_coefficients(const hypergeometric_1F1_recurrence_a_coefficients&) = default;
- hypergeometric_1F1_recurrence_a_coefficients operator=(const hypergeometric_1F1_recurrence_a_coefficients&) = delete;
- result_type operator()(std::intmax_t i) const
- {
- const T ai = a + i;
- const T an = b - ai;
- const T bn = (2 * ai - b + z);
- const T cn = -ai;
- return boost::math::make_tuple(an, bn, cn);
- }
- private:
- const T a;
- const T b;
- const T z;
- };
- template <class T>
- struct hypergeometric_1F1_recurrence_b_coefficients
- {
- using result_type = boost::math::tuple<T, T, T>;
- hypergeometric_1F1_recurrence_b_coefficients(const T& a, const T& b, const T& z):
- a(a), b(b), z(z)
- {
- }
- hypergeometric_1F1_recurrence_b_coefficients(const hypergeometric_1F1_recurrence_b_coefficients&) = default;
- hypergeometric_1F1_recurrence_b_coefficients& operator=(const hypergeometric_1F1_recurrence_b_coefficients&) = delete;
- result_type operator()(std::intmax_t i) const
- {
- const T bi = b + i;
- const T an = bi * (bi - 1);
- const T bn = bi * (1 - bi - z);
- const T cn = z * (bi - a);
- return boost::math::make_tuple(an, bn, cn);
- }
- private:
- const T a;
- const T b;
- const T z;
- };
- //
- // for use when we're recursing to a small b:
- //
- template <class T>
- struct hypergeometric_1F1_recurrence_small_b_coefficients
- {
- using result_type = boost::math::tuple<T, T, T>;
- hypergeometric_1F1_recurrence_small_b_coefficients(const T& a, const T& b, const T& z, int N) :
- a(a), b(b), z(z), N(N)
- {
- }
- hypergeometric_1F1_recurrence_small_b_coefficients(const hypergeometric_1F1_recurrence_small_b_coefficients&) = default;
- hypergeometric_1F1_recurrence_small_b_coefficients operator=(const hypergeometric_1F1_recurrence_small_b_coefficients&) = delete;
- result_type operator()(std::intmax_t i) const
- {
- const T bi = b + (i + N);
- const T bi_minus_1 = b + (i + N - 1);
- const T an = bi * bi_minus_1;
- const T bn = bi * (-bi_minus_1 - z);
- const T cn = z * (bi - a);
- return boost::math::make_tuple(an, bn, cn);
- }
- private:
- const T a;
- const T b;
- const T z;
- int N;
- };
- template <class T>
- struct hypergeometric_1F1_recurrence_a_and_b_coefficients
- {
- using result_type = boost::math::tuple<T, T, T>;
- hypergeometric_1F1_recurrence_a_and_b_coefficients(const T& a, const T& b, const T& z, int offset = 0):
- a(a), b(b), z(z), offset(offset)
- {
- }
- hypergeometric_1F1_recurrence_a_and_b_coefficients(const hypergeometric_1F1_recurrence_a_and_b_coefficients&) = default;
- hypergeometric_1F1_recurrence_a_and_b_coefficients operator=(const hypergeometric_1F1_recurrence_a_and_b_coefficients&) = delete;
- result_type operator()(std::intmax_t i) const
- {
- const T ai = a + (offset + i);
- const T bi = b + (offset + i);
- const T an = bi * (b + (offset + i - 1));
- const T bn = bi * (z - (b + (offset + i - 1)));
- const T cn = -ai * z;
- return boost::math::make_tuple(an, bn, cn);
- }
- private:
- const T a;
- const T b;
- const T z;
- int offset;
- };
- #if 0
- //
- // These next few recurrence relations are archived for future reference, some of them are novel, though all
- // are trivially derived from the existing well known relations:
- //
- // Recurrence relation for double-stepping on both a and b:
- // - b(b-1)(b-2) / (2-b+z) M(a-2,b-2,z) + [b(a-1)z / (2-b+z) + b(1-b+z) + abz(b+1) /(b+1)(z-b)] M(a,b,z) - a(a+1)z^2 / (b+1)(z-b) M(a+2,b+2,z)
- //
- template <class T>
- struct hypergeometric_1F1_recurrence_2a_and_2b_coefficients
- {
- typedef boost::math::tuple<T, T, T> result_type;
- hypergeometric_1F1_recurrence_2a_and_2b_coefficients(const T& a, const T& b, const T& z, int offset = 0) :
- a(a), b(b), z(z), offset(offset)
- {
- }
- result_type operator()(std::intmax_t i) const
- {
- i *= 2;
- const T ai = a + (offset + i);
- const T bi = b + (offset + i);
- const T an = -bi * (b + (offset + i - 1)) * (b + (offset + i - 2)) / (-(b + (offset + i - 2)) + z);
- const T bn = bi * (a + (offset + i - 1)) * z / (z - (b + (offset + i - 2)))
- + bi * (z - (b + (offset + i - 1)))
- + ai * bi * z * (b + (offset + i + 1)) / ((b + (offset + i + 1)) * (z - bi));
- const T cn = -ai * (a + (offset + i + 1)) * z * z / ((b + (offset + i + 1)) * (z - bi));
- return boost::math::make_tuple(an, bn, cn);
- }
- private:
- const T a, b, z;
- int offset;
- hypergeometric_1F1_recurrence_2a_and_2b_coefficients operator=(const hypergeometric_1F1_recurrence_2a_and_2b_coefficients&);
- };
- //
- // Recurrence relation for double-stepping on a:
- // -(b-a)(1 + b - a)/(2a-2-b+z)M(a-2,b,z) + [(b-a)(a-1)/(2a-2-b+z) + (2a-b+z) + a(b-a-1)/(2a+2-b+z)]M(a,b,z) -a(a+1)/(2a+2-b+z)M(a+2,b,z)
- //
- template <class T>
- struct hypergeometric_1F1_recurrence_2a_coefficients
- {
- typedef boost::math::tuple<T, T, T> result_type;
- hypergeometric_1F1_recurrence_2a_coefficients(const T& a, const T& b, const T& z, int offset = 0) :
- a(a), b(b), z(z), offset(offset)
- {
- }
- result_type operator()(std::intmax_t i) const
- {
- i *= 2;
- const T ai = a + (offset + i);
- // -(b-a)(1 + b - a)/(2a-2-b+z)
- const T an = -(b - ai) * (b - (a + (offset + i - 1))) / (2 * (a + (offset + i - 1)) - b + z);
- const T bn = (b - ai) * (a + (offset + i - 1)) / (2 * (a + (offset + i - 1)) - b + z) + (2 * ai - b + z) + ai * (b - (a + (offset + i + 1))) / (2 * (a + (offset + i + 1)) - b + z);
- const T cn = -ai * (a + (offset + i + 1)) / (2 * (a + (offset + i + 1)) - b + z);
- return boost::math::make_tuple(an, bn, cn);
- }
- private:
- const T a, b, z;
- int offset;
- hypergeometric_1F1_recurrence_2a_coefficients operator=(const hypergeometric_1F1_recurrence_2a_coefficients&);
- };
- //
- // Recurrence relation for double-stepping on b:
- // b(b-1)^2(b-2)/((1-b)(2-b-z)) M(a,b-2,z) + [zb(b-1)(b-1-a)/((1-b)(2-b-z)) + b(1-b-z) + z(b-a)(b+1)b/((b+1)(b+z)) ] M(a,b,z) + z^2(b-a)(b+1-a)/((b+1)(b+z)) M(a,b+2,z)
- //
- template <class T>
- struct hypergeometric_1F1_recurrence_2b_coefficients
- {
- typedef boost::math::tuple<T, T, T> result_type;
- hypergeometric_1F1_recurrence_2b_coefficients(const T& a, const T& b, const T& z, int offset = 0) :
- a(a), b(b), z(z), offset(offset)
- {
- }
- result_type operator()(std::intmax_t i) const
- {
- i *= 2;
- const T bi = b + (offset + i);
- const T bi_m1 = b + (offset + i - 1);
- const T bi_p1 = b + (offset + i + 1);
- const T bi_m2 = b + (offset + i - 2);
- const T an = bi * (bi_m1) * (bi_m1) * (bi_m2) / (-bi_m1 * (-bi_m2 - z));
- const T bn = z * bi * bi_m1 * (bi_m1 - a) / (-bi_m1 * (-bi_m2 - z)) + bi * (-bi_m1 - z) + z * (bi - a) * bi_p1 * bi / (bi_p1 * (bi + z));
- const T cn = z * z * (bi - a) * (bi_p1 - a) / (bi_p1 * (bi + z));
- return boost::math::make_tuple(an, bn, cn);
- }
- private:
- const T a, b, z;
- int offset;
- hypergeometric_1F1_recurrence_2b_coefficients operator=(const hypergeometric_1F1_recurrence_2b_coefficients&);
- };
- //
- // Recurrence relation for a+ b-:
- // -z(b-a)(a-1-b)/(b(a-1+z)) M(a-1,b+1,z) + [(b-a)(a-1)b/(b(a-1+z)) + (2a-b+z) + a(b-a-1)/(a+z)] M(a,b,z) + a(1-b)/(a+z) M(a+1,b-1,z)
- //
- // This is potentially the most useful of these novel recurrences.
- // - - + - +
- template <class T>
- struct hypergeometric_1F1_recurrence_a_plus_b_minus_coefficients
- {
- typedef boost::math::tuple<T, T, T> result_type;
- hypergeometric_1F1_recurrence_a_plus_b_minus_coefficients(const T& a, const T& b, const T& z, int offset = 0) :
- a(a), b(b), z(z), offset(offset)
- {
- }
- result_type operator()(std::intmax_t i) const
- {
- const T ai = a + (offset + i);
- const T bi = b - (offset + i);
- const T an = -z * (bi - ai) * (ai - 1 - bi) / (bi * (ai - 1 + z));
- const T bn = z * ((-1 / (ai + z) - 1 / (ai + z - 1)) * (bi + z - 1) + 3) + bi - 1;
- const T cn = ai * (1 - bi) / (ai + z);
- return boost::math::make_tuple(an, bn, cn);
- }
- private:
- const T a, b, z;
- int offset;
- hypergeometric_1F1_recurrence_a_plus_b_minus_coefficients operator=(const hypergeometric_1F1_recurrence_a_plus_b_minus_coefficients&);
- };
- #endif
- template <class T, class Policy>
- inline T hypergeometric_1F1_backward_recurrence_for_negative_a(const T& a, const T& b, const T& z, const Policy& pol, const char* function, long long& log_scaling)
- {
- BOOST_MATH_STD_USING // modf, frexp, fabs, pow
- std::intmax_t integer_part = 0;
- T ak = modf(a, &integer_part);
- //
- // We need ak-1 positive to avoid infinite recursion below:
- //
- if (0 != ak)
- {
- ak += 2;
- integer_part -= 2;
- }
- if (ak - 1 == b)
- {
- // When ak - 1 == b are recursion coefficients disappear to zero and
- // we end up with a NaN result. Reduce the recursion steps by 1 to
- // avoid this. We rely on |b| small and therefore no infinite recursion.
- ak -= 1;
- integer_part += 1;
- }
- if (-integer_part > static_cast<std::intmax_t>(policies::get_max_series_iterations<Policy>()))
- return policies::raise_evaluation_error<T>(function, "1F1 arguments sit in a range with a so negative that we have no evaluation method, got a = %1%", std::numeric_limits<T>::quiet_NaN(), pol);
- T first {};
- T second {};
- if(ak == 0)
- {
- first = 1;
- ak -= 1;
- second = 1 - z / b;
- if (fabs(second) < 0.5)
- second = (b - z) / b; // cancellation avoidance
- }
- else
- {
- long long scaling1 {};
- long long scaling2 {};
- first = detail::hypergeometric_1F1_imp(ak, b, z, pol, scaling1);
- ak -= 1;
- second = detail::hypergeometric_1F1_imp(ak, b, z, pol, scaling2);
- if (scaling1 != scaling2)
- {
- second *= exp(T(scaling2 - scaling1));
- }
- log_scaling += scaling1;
- }
- ++integer_part;
- detail::hypergeometric_1F1_recurrence_a_coefficients<T> s(ak, b, z);
- return tools::apply_recurrence_relation_backward(s,
- static_cast<unsigned int>(std::abs(integer_part)),
- first,
- second, &log_scaling);
- }
- template <class T, class Policy>
- T hypergeometric_1F1_backwards_recursion_on_b_for_negative_a(const T& a, const T& b, const T& z, const Policy& pol, const char*, long long& log_scaling)
- {
- using std::swap;
- BOOST_MATH_STD_USING // modf, frexp, fabs, pow
- //
- // We compute
- //
- // M[a + a_shift, b + b_shift; z]
- //
- // and recurse backwards on a and b down to
- //
- // M[a, b, z]
- //
- // With a + a_shift > 1 and b + b_shift > z
- //
- // There are 3 distinct regions to ensure stability during the recursions:
- //
- // a > 0 : stable for backwards on a
- // a < 0, b > 0 : stable for backwards on a and b
- // a < 0, b < 0 : stable for backwards on b (as long as |b| is small).
- //
- // We could simplify things by ignoring the middle region, but it's more efficient
- // to recurse on a and b together when we can.
- //
- BOOST_MATH_ASSERT(a < -1); // Not tested nor taken for -1 < a < 0
- int b_shift = itrunc(z - b) + 2;
- int a_shift = itrunc(-a);
- if (a + a_shift != 0)
- {
- a_shift += 2;
- }
- //
- // If the shifts are so large that we would throw an evaluation_error, try the series instead,
- // even though this will almost certainly throw as well:
- //
- if (b_shift > static_cast<std::intmax_t>(boost::math::policies::get_max_series_iterations<Policy>()))
- return hypergeometric_1F1_checked_series_impl(a, b, z, pol, log_scaling);
- if (a_shift > static_cast<std::intmax_t>(boost::math::policies::get_max_series_iterations<Policy>()))
- return hypergeometric_1F1_checked_series_impl(a, b, z, pol, log_scaling);
- int a_b_shift = b < 0 ? itrunc(b + b_shift) : b_shift; // The max we can shift on a and b together
- int leading_a_shift = (std::min)(3, a_shift); // Just enough to make a negative
- if (a_b_shift > a_shift - 3)
- {
- a_b_shift = a_shift < 3 ? 0 : a_shift - 3;
- }
- else
- {
- // Need to ensure that leading_a_shift is large enough that a will reach it's target
- // after the first 2 phases (-,0) and (-,-) are over:
- leading_a_shift = a_shift - a_b_shift;
- }
- int trailing_b_shift = b_shift - a_b_shift;
- if (a_b_shift < 5)
- {
- // Might as well do things in two steps rather than 3:
- if (a_b_shift > 0)
- {
- leading_a_shift += a_b_shift;
- trailing_b_shift += a_b_shift;
- }
- a_b_shift = 0;
- --leading_a_shift;
- }
- BOOST_MATH_ASSERT(leading_a_shift > 1);
- BOOST_MATH_ASSERT(a_b_shift + leading_a_shift + (a_b_shift == 0 ? 1 : 0) == a_shift);
- BOOST_MATH_ASSERT(a_b_shift + trailing_b_shift == b_shift);
- if ((trailing_b_shift == 0) && (fabs(b) < 0.5) && a_b_shift)
- {
- // Better to have the final recursion on b alone, otherwise we lose precision when b is very small:
- int diff = (std::min)(a_b_shift, 3);
- a_b_shift -= diff;
- leading_a_shift += diff;
- trailing_b_shift += diff;
- }
- T first {};
- T second {};
- long long scale1 {};
- long long scale2 {};
- first = boost::math::detail::hypergeometric_1F1_imp(T(a + a_shift), T(b + b_shift), z, pol, scale1);
- //
- // It would be good to compute "second" from first and the ratio - unfortunately we are right on the cusp
- // recursion on a switching from stable backwards to stable forwards behaviour and so this is not possible here.
- //
- second = boost::math::detail::hypergeometric_1F1_imp(T(a + a_shift - 1), T(b + b_shift), z, pol, scale2);
- if (scale1 != scale2)
- second *= exp(T(scale2 - scale1));
- log_scaling += scale1;
- //
- // Now we have [a + a_shift, b + b_shift, z] and [a + a_shift - 1, b + b_shift, z]
- // and want to recurse until [a + a_shift - leading_a_shift, b + b_shift, z] and [a + a_shift - leadng_a_shift - 1, b + b_shift, z]
- // which is leading_a_shift -1 steps.
- //
- second = boost::math::tools::apply_recurrence_relation_backward(
- hypergeometric_1F1_recurrence_a_coefficients<T>(a + a_shift - 1, b + b_shift, z),
- leading_a_shift, first, second, &log_scaling, &first);
- if (a_b_shift)
- {
- //
- // Now we need to switch to an a+b shift so that we have:
- // [a + a_shift - leading_a_shift, b + b_shift, z] and [a + a_shift - leadng_a_shift - 1, b + b_shift - 1, z]
- // A&S 13.4.3 gives us what we need:
- //
- {
- // local a's and b's:
- T la = a + a_shift - leading_a_shift - 1;
- T lb = b + b_shift;
- second = ((1 + la - lb) * second - la * first) / (1 - lb);
- }
- //
- // Now apply a_b_shift - 1 recursions to get down to
- // [a + 1, b + trailing_b_shift + 1, z] and [a, b + trailing_b_shift, z]
- //
- second = boost::math::tools::apply_recurrence_relation_backward(
- hypergeometric_1F1_recurrence_a_and_b_coefficients<T>(a, b + b_shift - a_b_shift, z, a_b_shift - 1),
- a_b_shift - 1, first, second, &log_scaling, &first);
- //
- // Now we need to switch to a b shift, a different application of A&S 13.4.3
- // will get us there, we leave "second" where it is, and move "first" sideways:
- //
- {
- T lb = b + trailing_b_shift + 1;
- first = (second * (lb - 1) - a * first) / -(1 + a - lb);
- }
- }
- else
- {
- //
- // We have M[a+1, b+b_shift, z] and M[a, b+b_shift, z] and need M[a, b+b_shift-1, z] for
- // recursion on b: A&S 13.4.3 gives us what we need.
- //
- T third = -(second * (1 + a - b - b_shift) - first * a) / (b + b_shift - 1);
- swap(first, second);
- swap(second, third);
- --trailing_b_shift;
- }
- //
- // Finish off by applying trailing_b_shift recursions:
- //
- if (trailing_b_shift)
- {
- second = boost::math::tools::apply_recurrence_relation_backward(
- hypergeometric_1F1_recurrence_small_b_coefficients<T>(a, b, z, trailing_b_shift),
- trailing_b_shift, first, second, &log_scaling);
- }
- return second;
- }
- } } } // namespaces
- #endif // BOOST_HYPERGEOMETRIC_1F1_RECURRENCE_HPP_
|