123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 |
- // Copyright (c) 2013 Anton Bikineev
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- //
- // This is a partial header, do not include on it's own!!!
- //
- // Contains asymptotic expansions for derivatives of Bessel J(v,x) and Y(v,x)
- // functions, as x -> INF.
- #ifndef BOOST_MATH_SF_DETAIL_BESSEL_JY_DERIVATIVES_ASYM_HPP
- #define BOOST_MATH_SF_DETAIL_BESSEL_JY_DERIVATIVES_ASYM_HPP
- #ifdef _MSC_VER
- #pragma once
- #endif
- namespace boost{ namespace math{ namespace detail{
- template <class T>
- inline T asymptotic_bessel_derivative_amplitude(T v, T x)
- {
- // Calculate the amplitude for J'(v,x) and I'(v,x)
- // for large x: see A&S 9.2.30.
- BOOST_MATH_STD_USING
- T s = 1;
- const T mu = 4 * v * v;
- T txq = 2 * x;
- txq *= txq;
- s -= (mu - 3) / (2 * txq);
- s -= ((mu - 1) * (mu - 45)) / (txq * txq * 8);
- return sqrt(s * 2 / (boost::math::constants::pi<T>() * x));
- }
- template <class T>
- inline T asymptotic_bessel_derivative_phase_mx(T v, T x)
- {
- // Calculate the phase of J'(v, x) and Y'(v, x) for large x.
- // See A&S 9.2.31.
- // Note that the result returned is the phase less (x - PI(v/2 - 1/4))
- // which we'll factor in later when we calculate the sines/cosines of the result:
- const T mu = 4 * v * v;
- const T mu2 = mu * mu;
- const T mu3 = mu2 * mu;
- T denom = 4 * x;
- T denom_mult = denom * denom;
- T s = 0;
- s += (mu + 3) / (2 * denom);
- denom *= denom_mult;
- s += (mu2 + (46 * mu) - 63) / (6 * denom);
- denom *= denom_mult;
- s += (mu3 + (185 * mu2) - (2053 * mu) + 1899) / (5 * denom);
- return s;
- }
- template <class T, class Policy>
- inline T asymptotic_bessel_y_derivative_large_x_2(T v, T x, const Policy& pol)
- {
- // See A&S 9.2.20.
- BOOST_MATH_STD_USING
- // Get the phase and amplitude:
- const T ampl = asymptotic_bessel_derivative_amplitude(v, x);
- const T phase = asymptotic_bessel_derivative_phase_mx(v, x);
- BOOST_MATH_INSTRUMENT_VARIABLE(ampl);
- BOOST_MATH_INSTRUMENT_VARIABLE(phase);
- //
- // Calculate the sine of the phase, using
- // sine/cosine addition rules to factor in
- // the x - PI(v/2 - 1/4) term not added to the
- // phase when we calculated it.
- //
- const T cx = cos(x);
- const T sx = sin(x);
- const T vd2shifted = (v / 2) - 0.25f;
- const T ci = cos_pi(vd2shifted, pol);
- const T si = sin_pi(vd2shifted, pol);
- const T sin_phase = sin(phase) * (cx * ci + sx * si) + cos(phase) * (sx * ci - cx * si);
- BOOST_MATH_INSTRUMENT_CODE(sin(phase));
- BOOST_MATH_INSTRUMENT_CODE(cos(x));
- BOOST_MATH_INSTRUMENT_CODE(cos(phase));
- BOOST_MATH_INSTRUMENT_CODE(sin(x));
- return sin_phase * ampl;
- }
- template <class T, class Policy>
- inline T asymptotic_bessel_j_derivative_large_x_2(T v, T x, const Policy& pol)
- {
- // See A&S 9.2.20.
- BOOST_MATH_STD_USING
- // Get the phase and amplitude:
- const T ampl = asymptotic_bessel_derivative_amplitude(v, x);
- const T phase = asymptotic_bessel_derivative_phase_mx(v, x);
- BOOST_MATH_INSTRUMENT_VARIABLE(ampl);
- BOOST_MATH_INSTRUMENT_VARIABLE(phase);
- //
- // Calculate the sine of the phase, using
- // sine/cosine addition rules to factor in
- // the x - PI(v/2 - 1/4) term not added to the
- // phase when we calculated it.
- //
- BOOST_MATH_INSTRUMENT_CODE(cos(phase));
- BOOST_MATH_INSTRUMENT_CODE(cos(x));
- BOOST_MATH_INSTRUMENT_CODE(sin(phase));
- BOOST_MATH_INSTRUMENT_CODE(sin(x));
- const T cx = cos(x);
- const T sx = sin(x);
- const T vd2shifted = (v / 2) - 0.25f;
- const T ci = cos_pi(vd2shifted, pol);
- const T si = sin_pi(vd2shifted, pol);
- const T sin_phase = cos(phase) * (cx * ci + sx * si) - sin(phase) * (sx * ci - cx * si);
- BOOST_MATH_INSTRUMENT_VARIABLE(sin_phase);
- return sin_phase * ampl;
- }
- template <class T>
- inline bool asymptotic_bessel_derivative_large_x_limit(const T& v, const T& x)
- {
- BOOST_MATH_STD_USING
- //
- // This function is the copy of math::asymptotic_bessel_large_x_limit
- // It means that we use the same rules for determining how x is large
- // compared to v.
- //
- // Determines if x is large enough compared to v to take the asymptotic
- // forms above. From A&S 9.2.28 we require:
- // v < x * eps^1/8
- // and from A&S 9.2.29 we require:
- // v^12/10 < 1.5 * x * eps^1/10
- // using the former seems to work OK in practice with broadly similar
- // error rates either side of the divide for v < 10000.
- // At double precision eps^1/8 ~= 0.01.
- //
- return (std::max)(T(fabs(v)), T(1)) < x * sqrt(boost::math::tools::forth_root_epsilon<T>());
- }
- }}} // namespaces
- #endif // BOOST_MATH_SF_DETAIL_BESSEL_JY_DERIVATIVES_ASYM_HPP
|