123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 |
- // Copyright (c) 2006 Xiaogang Zhang
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_BESSEL_JN_HPP
- #define BOOST_MATH_BESSEL_JN_HPP
- #ifdef _MSC_VER
- #pragma once
- #endif
- #include <boost/math/special_functions/detail/bessel_j0.hpp>
- #include <boost/math/special_functions/detail/bessel_j1.hpp>
- #include <boost/math/special_functions/detail/bessel_jy.hpp>
- #include <boost/math/special_functions/detail/bessel_jy_asym.hpp>
- #include <boost/math/special_functions/detail/bessel_jy_series.hpp>
- // Bessel function of the first kind of integer order
- // J_n(z) is the minimal solution
- // n < abs(z), forward recurrence stable and usable
- // n >= abs(z), forward recurrence unstable, use Miller's algorithm
- namespace boost { namespace math { namespace detail{
- template <typename T, typename Policy>
- T bessel_jn(int n, T x, const Policy& pol)
- {
- T value(0), factor, current, prev, next;
- BOOST_MATH_STD_USING
- //
- // Reflection has to come first:
- //
- if (n < 0)
- {
- factor = static_cast<T>((n & 0x1) ? -1 : 1); // J_{-n}(z) = (-1)^n J_n(z)
- n = -n;
- }
- else
- {
- factor = 1;
- }
- if(x < 0)
- {
- factor *= (n & 0x1) ? -1 : 1; // J_{n}(-z) = (-1)^n J_n(z)
- x = -x;
- }
- //
- // Special cases:
- //
- if(asymptotic_bessel_large_x_limit(T(n), x))
- return factor * asymptotic_bessel_j_large_x_2<T>(T(n), x, pol);
- if (n == 0)
- {
- return factor * bessel_j0(x);
- }
- if (n == 1)
- {
- return factor * bessel_j1(x);
- }
- if (x == 0) // n >= 2
- {
- return static_cast<T>(0);
- }
- BOOST_MATH_ASSERT(n > 1);
- T scale = 1;
- if (n < abs(x)) // forward recurrence
- {
- prev = bessel_j0(x);
- current = bessel_j1(x);
- policies::check_series_iterations<T>("boost::math::bessel_j_n<%1%>(%1%,%1%)", n, pol);
- for (int k = 1; k < n; k++)
- {
- value = (2 * k * current / x) - prev;
- prev = current;
- current = value;
- }
- }
- else if((x < 1) || (n > x * x / 4) || (x < 5))
- {
- return factor * bessel_j_small_z_series(T(n), x, pol);
- }
- else // backward recurrence
- {
- T fn; int s; // fn = J_(n+1) / J_n
- // |x| <= n, fast convergence for continued fraction CF1
- boost::math::detail::CF1_jy(static_cast<T>(n), x, &fn, &s, pol);
- prev = fn;
- current = 1;
- // Check recursion won't go on too far:
- policies::check_series_iterations<T>("boost::math::bessel_j_n<%1%>(%1%,%1%)", n, pol);
- for (int k = n; k > 0; k--)
- {
- T fact = 2 * k / x;
- if((fabs(fact) > 1) && ((tools::max_value<T>() - fabs(prev)) / fabs(fact) < fabs(current)))
- {
- prev /= current;
- scale /= current;
- current = 1;
- }
- next = fact * current - prev;
- prev = current;
- current = next;
- }
- value = bessel_j0(x) / current; // normalization
- scale = 1 / scale;
- }
- value *= factor;
- if(tools::max_value<T>() * scale < fabs(value))
- return policies::raise_overflow_error<T>("boost::math::bessel_jn<%1%>(%1%,%1%)", nullptr, pol); // LCOV_EXCL_LINE we should never get here!
- return value / scale;
- }
- }}} // namespaces
- #endif // BOOST_MATH_BESSEL_JN_HPP
|