123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 |
- // Copyright (c) 2006 Xiaogang Zhang
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_BESSEL_J0_HPP
- #define BOOST_MATH_BESSEL_J0_HPP
- #ifdef _MSC_VER
- #pragma once
- #endif
- #include <boost/math/constants/constants.hpp>
- #include <boost/math/tools/rational.hpp>
- #include <boost/math/tools/big_constant.hpp>
- #include <boost/math/tools/assert.hpp>
- #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128)
- //
- // This is the only way we can avoid
- // warning: non-standard suffix on floating constant [-Wpedantic]
- // when building with -Wall -pedantic. Neither __extension__
- // nor #pragma diagnostic ignored work :(
- //
- #pragma GCC system_header
- #endif
- // Bessel function of the first kind of order zero
- // x <= 8, minimax rational approximations on root-bracketing intervals
- // x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968
- namespace boost { namespace math { namespace detail{
- template <typename T>
- T bessel_j0(T x);
- template <typename T>
- T bessel_j0(T x)
- {
- #ifdef BOOST_MATH_INSTRUMENT
- static bool b = false;
- if (!b)
- {
- std::cout << "bessel_j0 called with " << typeid(x).name() << std::endl;
- std::cout << "double = " << typeid(double).name() << std::endl;
- std::cout << "long double = " << typeid(long double).name() << std::endl;
- b = true;
- }
- #endif
- static const T P1[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.1298668500990866786e+11)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.7282507878605942706e+10)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.2140700423540120665e+08)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6302997904833794242e+06)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.6629814655107086448e+04)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0344222815443188943e+02)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2117036164593528341e-01))
- };
- static const T Q1[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.3883787996332290397e+12)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.6328198300859648632e+10)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3985097372263433271e+08)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.5612696224219938200e+05)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.3614022392337710626e+02)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0))
- };
- static const T P2[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8319397969392084011e+03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2254078161378989535e+04)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -7.2879702464464618998e+03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0341910641583726701e+04)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1725046279757103576e+04)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.4176707025325087628e+03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.4321196680624245801e+02)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.8591703355916499363e+01))
- };
- static const T Q2[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.5783478026152301072e+05)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.4599102262586308984e+05)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.4055062591169562211e+04)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8680990008359188352e+04)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.9458766545509337327e+03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.3307310774649071172e+02)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.5258076240801555057e+01)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
- };
- static const T PC[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2779090197304684302e+04)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1345386639580765797e+04)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1170523380864944322e+04)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4806486443249270347e+03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5376201909008354296e+02)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.8961548424210455236e-01))
- };
- static const T QC[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2779090197304684318e+04)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1370412495510416640e+04)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1215350561880115730e+04)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5028735138235608207e+03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5711159858080893649e+02)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
- };
- static const T PS[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.9226600200800094098e+01)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8591953644342993800e+02)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1183429920482737611e+02)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2300261666214198472e+01)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2441026745835638459e+00)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.8033303048680751817e-03))
- };
- static const T QS[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.7105024128512061905e+03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1951131543434613647e+04)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.2642780169211018836e+03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4887231232283756582e+03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.0593769594993125859e+01)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
- };
- static const T x1 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.4048255576957727686e+00)),
- x2 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.5200781102863106496e+00)),
- x11 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.160e+02)),
- x12 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.42444230422723137837e-03)),
- x21 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4130e+03)),
- x22 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.46860286310649596604e-04));
- T value, factor, r, rc, rs;
- BOOST_MATH_STD_USING
- using namespace boost::math::tools;
- using namespace boost::math::constants;
- BOOST_MATH_ASSERT(x >= 0); // reflection handled elsewhere.
- if (x == 0)
- {
- return static_cast<T>(1);
- }
- if (x <= 4) // x in (0, 4]
- {
- T y = x * x;
- BOOST_MATH_ASSERT(sizeof(P1) == sizeof(Q1));
- r = evaluate_rational(P1, Q1, y);
- factor = (x + x1) * ((x - x11/256) - x12);
- value = factor * r;
- }
- else if (x <= 8.0) // x in (4, 8]
- {
- T y = 1 - (x * x)/64;
- BOOST_MATH_ASSERT(sizeof(P2) == sizeof(Q2));
- r = evaluate_rational(P2, Q2, y);
- factor = (x + x2) * ((x - x21/256) - x22);
- value = factor * r;
- }
- else // x in (8, \infty)
- {
- T y = 8 / x;
- T y2 = y * y;
- BOOST_MATH_ASSERT(sizeof(PC) == sizeof(QC));
- BOOST_MATH_ASSERT(sizeof(PS) == sizeof(QS));
- rc = evaluate_rational(PC, QC, y2);
- rs = evaluate_rational(PS, QS, y2);
- factor = constants::one_div_root_pi<T>() / sqrt(x);
- //
- // What follows is really just:
- //
- // T z = x - pi/4;
- // value = factor * (rc * cos(z) - y * rs * sin(z));
- //
- // But using the addition formulae for sin and cos, plus
- // the special values for sin/cos of pi/4.
- //
- T sx = sin(x);
- T cx = cos(x);
- BOOST_MATH_INSTRUMENT_VARIABLE(rc);
- BOOST_MATH_INSTRUMENT_VARIABLE(rs);
- BOOST_MATH_INSTRUMENT_VARIABLE(factor);
- BOOST_MATH_INSTRUMENT_VARIABLE(sx);
- BOOST_MATH_INSTRUMENT_VARIABLE(cx);
- value = factor * (rc * (cx + sx) - y * rs * (sx - cx));
- }
- return value;
- }
- }}} // namespaces
- #endif // BOOST_MATH_BESSEL_J0_HPP
|