123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 |
- // (C) Copyright John Maddock 2006.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_SF_CBRT_HPP
- #define BOOST_MATH_SF_CBRT_HPP
- #ifdef _MSC_VER
- #pragma once
- #endif
- #include <boost/math/tools/rational.hpp>
- #include <boost/math/policies/error_handling.hpp>
- #include <boost/math/special_functions/math_fwd.hpp>
- #include <boost/math/special_functions/fpclassify.hpp>
- #include <type_traits>
- #include <cstdint>
- namespace boost{ namespace math{
- namespace detail
- {
- struct big_int_type
- {
- operator std::uintmax_t() const;
- };
- template <typename T>
- struct largest_cbrt_int_type
- {
- using type = typename std::conditional<
- std::is_convertible<big_int_type, T>::value,
- std::uintmax_t,
- unsigned int
- >::type;
- };
- template <typename T, typename Policy>
- T cbrt_imp(T z, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- //
- // cbrt approximation for z in the range [0.5,1]
- // It's hard to say what number of terms gives the optimum
- // trade off between precision and performance, this seems
- // to be about the best for double precision.
- //
- // Maximum Deviation Found: 1.231e-006
- // Expected Error Term: -1.231e-006
- // Maximum Relative Change in Control Points: 5.982e-004
- //
- static const T P[] = {
- static_cast<T>(0.37568269008611818),
- static_cast<T>(1.3304968705558024),
- static_cast<T>(-1.4897101632445036),
- static_cast<T>(1.2875573098219835),
- static_cast<T>(-0.6398703759826468),
- static_cast<T>(0.13584489959258635),
- };
- static const T correction[] = {
- static_cast<T>(0.62996052494743658238360530363911), // 2^-2/3
- static_cast<T>(0.79370052598409973737585281963615), // 2^-1/3
- static_cast<T>(1),
- static_cast<T>(1.2599210498948731647672106072782), // 2^1/3
- static_cast<T>(1.5874010519681994747517056392723), // 2^2/3
- };
- if((boost::math::isinf)(z) || (z == 0))
- return z;
- if(!(boost::math::isfinite)(z))
- {
- return policies::raise_domain_error("boost::math::cbrt<%1%>(%1%)", "Argument to function must be finite but got %1%.", z, pol);
- }
- int i_exp, sign(1);
- if(z < 0)
- {
- z = -z;
- sign = -sign;
- }
- T guess = frexp(z, &i_exp);
- int original_i_exp = i_exp; // save for later
- guess = tools::evaluate_polynomial(P, guess);
- int i_exp3 = i_exp / 3;
- using shift_type = typename largest_cbrt_int_type<T>::type;
- static_assert( ::std::numeric_limits<shift_type>::radix == 2, "The radix of the type to shift to must be 2.");
- if(abs(i_exp3) < std::numeric_limits<shift_type>::digits)
- {
- if(i_exp3 > 0)
- guess *= shift_type(1u) << i_exp3;
- else
- guess /= shift_type(1u) << -i_exp3;
- }
- else
- {
- guess = ldexp(guess, i_exp3);
- }
- i_exp %= 3;
- guess *= correction[i_exp + 2];
- //
- // Now inline Halley iteration.
- // We do this here rather than calling tools::halley_iterate since we can
- // simplify the expressions algebraically, and don't need most of the error
- // checking of the boilerplate version as we know in advance that the function
- // is well behaved...
- //
- using prec = typename policies::precision<T, Policy>::type;
- constexpr auto prec3 = prec::value / 3;
- constexpr auto new_prec = prec3 + 3;
- using new_policy = typename policies::normalise<Policy, policies::digits2<new_prec>>::type;
- //
- // Epsilon calculation uses compile time arithmetic when it's available for type T,
- // otherwise uses ldexp to calculate at runtime:
- //
- T eps = (new_prec > 3) ? policies::get_epsilon<T, new_policy>() : ldexp(T(1), -2 - tools::digits<T>() / 3);
- T diff;
- if(original_i_exp < std::numeric_limits<T>::max_exponent - 3)
- {
- //
- // Safe from overflow, use the fast method:
- //
- do
- {
- T g3 = guess * guess * guess;
- diff = (g3 + z + z) / (g3 + g3 + z);
- guess *= diff;
- }
- while(fabs(1 - diff) > eps);
- }
- else
- {
- //
- // Either we're ready to overflow, or we can't tell because numeric_limits isn't
- // available for type T:
- //
- do
- {
- T g2 = guess * guess;
- diff = (g2 - z / guess) / (2 * guess + z / g2);
- guess -= diff;
- }
- while((guess * eps) < fabs(diff));
- }
- return sign * guess;
- }
- } // namespace detail
- template <typename T, typename Policy>
- inline typename tools::promote_args<T>::type cbrt(T z, const Policy& pol)
- {
- using result_type = typename tools::promote_args<T>::type;
- using value_type = typename policies::evaluation<result_type, Policy>::type;
- return static_cast<result_type>(detail::cbrt_imp(value_type(z), pol));
- }
- template <typename T>
- inline typename tools::promote_args<T>::type cbrt(T z)
- {
- return cbrt(z, policies::policy<>());
- }
- } // namespace math
- } // namespace boost
- #endif // BOOST_MATH_SF_CBRT_HPP
|