asinh.hpp 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110
  1. // boost asinh.hpp header file
  2. // (C) Copyright Eric Ford & Hubert Holin 2001.
  3. // (C) Copyright John Maddock 2008.
  4. // Distributed under the Boost Software License, Version 1.0. (See
  5. // accompanying file LICENSE_1_0.txt or copy at
  6. // http://www.boost.org/LICENSE_1_0.txt)
  7. // See http://www.boost.org for updates, documentation, and revision history.
  8. #ifndef BOOST_ASINH_HPP
  9. #define BOOST_ASINH_HPP
  10. #ifdef _MSC_VER
  11. #pragma once
  12. #endif
  13. #include <cmath>
  14. #include <boost/math/tools/precision.hpp>
  15. #include <boost/math/special_functions/math_fwd.hpp>
  16. #include <boost/math/special_functions/sqrt1pm1.hpp>
  17. #include <boost/math/special_functions/log1p.hpp>
  18. #include <boost/math/constants/constants.hpp>
  19. #include <boost/math/special_functions/fpclassify.hpp>
  20. // This is the inverse of the hyperbolic sine function.
  21. namespace boost
  22. {
  23. namespace math
  24. {
  25. namespace detail{
  26. template<typename T, class Policy>
  27. inline T asinh_imp(const T x, const Policy& pol)
  28. {
  29. BOOST_MATH_STD_USING
  30. if((boost::math::isnan)(x))
  31. {
  32. return policies::raise_domain_error<T>("boost::math::asinh<%1%>(%1%)", "asinh requires a finite argument, but got x = %1%.", x, pol);
  33. }
  34. if (x >= tools::forth_root_epsilon<T>())
  35. {
  36. if (x > 1 / tools::root_epsilon<T>())
  37. {
  38. // http://functions.wolfram.com/ElementaryFunctions/ArcSinh/06/01/06/01/0001/
  39. // approximation by laurent series in 1/x at 0+ order from -1 to 1
  40. return constants::ln_two<T>() + log(x) + 1/ (4 * x * x);
  41. }
  42. else if(x < 0.5f)
  43. {
  44. // As below, but rearranged to preserve digits:
  45. return boost::math::log1p(x + boost::math::sqrt1pm1(x * x, pol), pol);
  46. }
  47. else
  48. {
  49. // http://functions.wolfram.com/ElementaryFunctions/ArcSinh/02/
  50. return( log( x + sqrt(x*x+1) ) );
  51. }
  52. }
  53. else if (x <= -tools::forth_root_epsilon<T>())
  54. {
  55. return(-asinh(-x, pol));
  56. }
  57. else
  58. {
  59. // http://functions.wolfram.com/ElementaryFunctions/ArcSinh/06/01/03/01/0001/
  60. // approximation by taylor series in x at 0 up to order 2
  61. T result = x;
  62. if (abs(x) >= tools::root_epsilon<T>())
  63. {
  64. T x3 = x*x*x;
  65. // approximation by taylor series in x at 0 up to order 4
  66. result -= x3/static_cast<T>(6);
  67. }
  68. return(result);
  69. }
  70. }
  71. }
  72. template<typename T>
  73. inline typename tools::promote_args<T>::type asinh(T x)
  74. {
  75. return boost::math::asinh(x, policies::policy<>());
  76. }
  77. template<typename T, typename Policy>
  78. inline typename tools::promote_args<T>::type asinh(T x, const Policy&)
  79. {
  80. typedef typename tools::promote_args<T>::type result_type;
  81. typedef typename policies::evaluation<result_type, Policy>::type value_type;
  82. typedef typename policies::normalise<
  83. Policy,
  84. policies::promote_float<false>,
  85. policies::promote_double<false>,
  86. policies::discrete_quantile<>,
  87. policies::assert_undefined<> >::type forwarding_policy;
  88. return policies::checked_narrowing_cast<result_type, forwarding_policy>(
  89. detail::asinh_imp(static_cast<value_type>(x), forwarding_policy()),
  90. "boost::math::asinh<%1%>(%1%)");
  91. }
  92. }
  93. }
  94. #endif /* BOOST_ASINH_HPP */