123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289 |
- // Copyright Nick Thompson, 2017
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0.
- // (See accompanying file LICENSE_1_0.txt
- // or copy at http://www.boost.org/LICENSE_1_0.txt)
- /*
- * This class performs tanh-sinh quadrature on the real line.
- * Tanh-sinh quadrature is exponentially convergent for integrands in Hardy spaces,
- * (see https://en.wikipedia.org/wiki/Hardy_space for a formal definition), and is optimal for a random function from that class.
- *
- * The tanh-sinh quadrature is one of a class of so called "double exponential quadratures"-there is a large family of them,
- * but this one seems to be the most commonly used.
- *
- * As always, there are caveats: For instance, if the function you want to integrate is not holomorphic on the unit disk,
- * then the rapid convergence will be spoiled. In this case, a more appropriate quadrature is (say) Romberg, which does not
- * require the function to be holomorphic, only differentiable up to some order.
- *
- * In addition, if you are integrating a periodic function over a period, the trapezoidal rule is better.
- *
- * References:
- *
- * 1) Mori, Masatake. "Quadrature formulas obtained by variable transformation and the DE-rule." Journal of Computational and Applied Mathematics 12 (1985): 119-130.
- * 2) Bailey, David H., Karthik Jeyabalan, and Xiaoye S. Li. "A comparison of three high-precision quadrature schemes." Experimental Mathematics 14.3 (2005): 317-329.
- * 3) Press, William H., et al. "Numerical recipes third edition: the art of scientific computing." Cambridge University Press 32 (2007): 10013-2473.
- *
- */
- #ifndef BOOST_MATH_QUADRATURE_TANH_SINH_HPP
- #define BOOST_MATH_QUADRATURE_TANH_SINH_HPP
- #include <cmath>
- #include <limits>
- #include <memory>
- #include <boost/math/quadrature/detail/tanh_sinh_detail.hpp>
- namespace boost{ namespace math{ namespace quadrature {
- template<class Real, class Policy = policies::policy<> >
- class tanh_sinh
- {
- public:
- tanh_sinh(size_t max_refinements = 15, const Real& min_complement = tools::min_value<Real>() * 4)
- : m_imp(std::make_shared<detail::tanh_sinh_detail<Real, Policy>>(max_refinements, min_complement)) {}
- template<class F>
- auto integrate(const F f, Real a, Real b, Real tolerance = tools::root_epsilon<Real>(), Real* error = nullptr, Real* L1 = nullptr, std::size_t* levels = nullptr) const ->decltype(std::declval<F>()(std::declval<Real>()));
- template<class F>
- auto integrate(const F f, Real a, Real b, Real tolerance = tools::root_epsilon<Real>(), Real* error = nullptr, Real* L1 = nullptr, std::size_t* levels = nullptr) const ->decltype(std::declval<F>()(std::declval<Real>(), std::declval<Real>()));
- template<class F>
- auto integrate(const F f, Real tolerance = tools::root_epsilon<Real>(), Real* error = nullptr, Real* L1 = nullptr, std::size_t* levels = nullptr) const ->decltype(std::declval<F>()(std::declval<Real>()));
- template<class F>
- auto integrate(const F f, Real tolerance = tools::root_epsilon<Real>(), Real* error = nullptr, Real* L1 = nullptr, std::size_t* levels = nullptr) const ->decltype(std::declval<F>()(std::declval<Real>(), std::declval<Real>()));
- private:
- std::shared_ptr<detail::tanh_sinh_detail<Real, Policy>> m_imp;
- };
- template<class Real, class Policy>
- template<class F>
- auto tanh_sinh<Real, Policy>::integrate(const F f, Real a, Real b, Real tolerance, Real* error, Real* L1, std::size_t* levels) const ->decltype(std::declval<F>()(std::declval<Real>()))
- {
- BOOST_MATH_STD_USING
- using boost::math::constants::half;
- using boost::math::quadrature::detail::tanh_sinh_detail;
- static const char* function = "tanh_sinh<%1%>::integrate";
- typedef decltype(std::declval<F>()(std::declval<Real>())) result_type;
- static_assert(!std::is_integral<result_type>::value,
- "The return type cannot be integral, it must be either a real or complex floating point type.");
- if (!(boost::math::isnan)(a) && !(boost::math::isnan)(b))
- {
- // Infinite limits:
- if ((a <= -tools::max_value<Real>()) && (b >= tools::max_value<Real>()))
- {
- auto u = [&](const Real& t, const Real& tc)->result_type
- {
- Real t_sq = t*t;
- Real inv;
- if (t > 0.5f)
- inv = 1 / ((2 - tc) * tc);
- else if(t < -0.5)
- inv = 1 / ((2 + tc) * -tc);
- else
- inv = 1 / (1 - t_sq);
- return f(t*inv)*(1 + t_sq)*inv*inv;
- };
- Real limit = sqrt(tools::min_value<Real>()) * 4;
- return m_imp->integrate(u, error, L1, function, limit, limit, tolerance, levels);
- }
- // Right limit is infinite:
- if ((boost::math::isfinite)(a) && (b >= tools::max_value<Real>()))
- {
- auto u = [&](const Real& t, const Real& tc)->result_type
- {
- Real z, arg;
- if (t > -0.5f)
- z = 1 / (t + 1);
- else
- z = -1 / tc;
- if (t < 0.5)
- arg = 2 * z + a - 1;
- else
- arg = a + tc / (2 - tc);
- return f(arg)*z*z;
- };
- Real left_limit = sqrt(tools::min_value<Real>()) * 4;
- result_type Q = Real(2) * m_imp->integrate(u, error, L1, function, left_limit, tools::min_value<Real>(), tolerance, levels);
- if (L1)
- {
- *L1 *= 2;
- }
- if (error)
- {
- *error *= 2;
- }
- return Q;
- }
- if ((boost::math::isfinite)(b) && (a <= -tools::max_value<Real>()))
- {
- auto v = [&](const Real& t, const Real& tc)->result_type
- {
- Real z;
- if (t > -0.5)
- z = 1 / (t + 1);
- else
- z = -1 / tc;
- Real arg;
- if (t < 0.5)
- arg = 2 * z - 1;
- else
- arg = tc / (2 - tc);
- return f(b - arg) * z * z;
- };
- Real left_limit = sqrt(tools::min_value<Real>()) * 4;
- result_type Q = Real(2) * m_imp->integrate(v, error, L1, function, left_limit, tools::min_value<Real>(), tolerance, levels);
- if (L1)
- {
- *L1 *= 2;
- }
- if (error)
- {
- *error *= 2;
- }
- return Q;
- }
- if ((boost::math::isfinite)(a) && (boost::math::isfinite)(b))
- {
- if (a == b)
- {
- return result_type(0);
- }
- if (b < a)
- {
- return -this->integrate(f, b, a, tolerance, error, L1, levels);
- }
- Real avg = (a + b)*half<Real>();
- Real diff = (b - a)*half<Real>();
- Real avg_over_diff_m1 = a / diff;
- Real avg_over_diff_p1 = b / diff;
- bool have_small_left = fabs(a) < 0.5f;
- bool have_small_right = fabs(b) < 0.5f;
- Real left_min_complement = float_next(avg_over_diff_m1) - avg_over_diff_m1;
- Real min_complement_limit = (std::max)(tools::min_value<Real>(), float_next(Real(tools::min_value<Real>() / diff)));
- if (left_min_complement < min_complement_limit)
- left_min_complement = min_complement_limit;
- Real right_min_complement = avg_over_diff_p1 - float_prior(avg_over_diff_p1);
- if (right_min_complement < min_complement_limit)
- right_min_complement = min_complement_limit;
- //
- // These asserts will fail only if rounding errors on
- // type Real have accumulated so much error that it's
- // broken our internal logic. Should that prove to be
- // a persistent issue, we might need to add a bit of fudge
- // factor to move left_min_complement and right_min_complement
- // further from the end points of the range.
- //
- BOOST_MATH_ASSERT((left_min_complement * diff + a) > a);
- BOOST_MATH_ASSERT((b - right_min_complement * diff) < b);
- auto u = [&](Real z, Real zc)->result_type
- {
- Real position;
- if (z < -0.5)
- {
- if(have_small_left)
- return f(diff * (avg_over_diff_m1 - zc));
- position = a - diff * zc;
- }
- else if (z > 0.5)
- {
- if(have_small_right)
- return f(diff * (avg_over_diff_p1 - zc));
- position = b - diff * zc;
- }
- else
- position = avg + diff*z;
- BOOST_MATH_ASSERT(position != a);
- BOOST_MATH_ASSERT(position != b);
- return f(position);
- };
- result_type Q = diff*m_imp->integrate(u, error, L1, function, left_min_complement, right_min_complement, tolerance, levels);
- if (L1)
- {
- *L1 *= diff;
- }
- if (error)
- {
- *error *= diff;
- }
- return Q;
- }
- }
- return policies::raise_domain_error(function, "The domain of integration is not sensible; please check the bounds.", a, Policy());
- }
- template<class Real, class Policy>
- template<class F>
- auto tanh_sinh<Real, Policy>::integrate(const F f, Real a, Real b, Real tolerance, Real* error, Real* L1, std::size_t* levels) const ->decltype(std::declval<F>()(std::declval<Real>(), std::declval<Real>()))
- {
- BOOST_MATH_STD_USING
- using boost::math::constants::half;
- using boost::math::quadrature::detail::tanh_sinh_detail;
- static const char* function = "tanh_sinh<%1%>::integrate";
- if ((boost::math::isfinite)(a) && (boost::math::isfinite)(b))
- {
- if (b <= a)
- {
- return policies::raise_domain_error(function, "Arguments to integrate are in wrong order; integration over [a,b] must have b > a.", a, Policy());
- }
- auto u = [&](Real z, Real zc)->Real
- {
- if (z < 0)
- return f((a - b) * zc / 2 + a, (b - a) * zc / 2);
- else
- return f((a - b) * zc / 2 + b, (b - a) * zc / 2);
- };
- Real diff = (b - a)*half<Real>();
- Real left_min_complement = tools::min_value<Real>() * 4;
- Real right_min_complement = tools::min_value<Real>() * 4;
- Real Q = diff*m_imp->integrate(u, error, L1, function, left_min_complement, right_min_complement, tolerance, levels);
- if (L1)
- {
- *L1 *= diff;
- }
- if (error)
- {
- *error *= diff;
- }
- return Q;
- }
- return policies::raise_domain_error(function, "The domain of integration is not sensible; please check the bounds.", a, Policy());
- }
- template<class Real, class Policy>
- template<class F>
- auto tanh_sinh<Real, Policy>::integrate(const F f, Real tolerance, Real* error, Real* L1, std::size_t* levels) const ->decltype(std::declval<F>()(std::declval<Real>()))
- {
- using boost::math::quadrature::detail::tanh_sinh_detail;
- static const char* function = "tanh_sinh<%1%>::integrate";
- Real min_complement = tools::epsilon<Real>();
- return m_imp->integrate([&](const Real& arg, const Real&) { return f(arg); }, error, L1, function, min_complement, min_complement, tolerance, levels);
- }
- template<class Real, class Policy>
- template<class F>
- auto tanh_sinh<Real, Policy>::integrate(const F f, Real tolerance, Real* error, Real* L1, std::size_t* levels) const ->decltype(std::declval<F>()(std::declval<Real>(), std::declval<Real>()))
- {
- using boost::math::quadrature::detail::tanh_sinh_detail;
- static const char* function = "tanh_sinh<%1%>::integrate";
- Real min_complement = tools::min_value<Real>() * 4;
- return m_imp->integrate(f, error, L1, function, min_complement, min_complement, tolerance, levels);
- }
- }
- }
- }
- #endif
|