123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236 |
- /*
- * Copyright Nick Thompson, 2024
- * Use, modification and distribution are subject to the
- * Boost Software License, Version 1.0. (See accompanying file
- * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- */
- #ifndef BOOST_MATH_OPTIMIZATION_DIFFERENTIAL_EVOLUTION_HPP
- #define BOOST_MATH_OPTIMIZATION_DIFFERENTIAL_EVOLUTION_HPP
- #include <atomic>
- #include <boost/math/optimization/detail/common.hpp>
- #include <cmath>
- #include <limits>
- #include <mutex>
- #include <random>
- #include <sstream>
- #include <stdexcept>
- #include <thread>
- #include <utility>
- #include <vector>
- namespace boost::math::optimization {
- // Storn, R., Price, K. (1997). Differential evolution-a simple and efficient heuristic for global optimization over
- // continuous spaces.
- // Journal of global optimization, 11, 341-359.
- // See:
- // https://www.cp.eng.chula.ac.th/~prabhas//teaching/ec/ec2012/storn_price_de.pdf
- // We provide the parameters in a struct-there are too many of them and they are too unwieldy to pass individually:
- template <typename ArgumentContainer> struct differential_evolution_parameters {
- using Real = typename ArgumentContainer::value_type;
- using DimensionlessReal = decltype(Real()/Real());
- ArgumentContainer lower_bounds;
- ArgumentContainer upper_bounds;
- // mutation factor is also called scale factor or just F in the literature:
- DimensionlessReal mutation_factor = static_cast<DimensionlessReal>(0.65);
- DimensionlessReal crossover_probability = static_cast<DimensionlessReal>(0.5);
- // Population in each generation:
- size_t NP = 500;
- size_t max_generations = 1000;
- ArgumentContainer const *initial_guess = nullptr;
- unsigned threads = std::thread::hardware_concurrency();
- };
- template <typename ArgumentContainer>
- void validate_differential_evolution_parameters(differential_evolution_parameters<ArgumentContainer> const &de_params) {
- using std::isfinite;
- using std::isnan;
- std::ostringstream oss;
- detail::validate_bounds(de_params.lower_bounds, de_params.upper_bounds);
- if (de_params.NP < 4) {
- oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
- oss << ": The population size must be at least 4, but requested population size of " << de_params.NP << ".";
- throw std::invalid_argument(oss.str());
- }
- // From: "Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series)"
- // > The scale factor, F in (0,1+), is a positive real number that controls the rate at which the population evolves.
- // > While there is no upper limit on F, effective values are seldom greater than 1.0.
- // ...
- // Also see "Limits on F", Section 2.5.1:
- // > This discontinuity at F = 1 reduces the number of mutants by half and can result in erratic convergence...
- auto F = de_params.mutation_factor;
- if (isnan(F) || F >= 1 || F <= 0) {
- oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
- oss << ": F in (0, 1) is required, but got F=" << F << ".";
- throw std::domain_error(oss.str());
- }
- if (de_params.max_generations < 1) {
- oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
- oss << ": There must be at least one generation.";
- throw std::invalid_argument(oss.str());
- }
- if (de_params.initial_guess) {
- detail::validate_initial_guess(*de_params.initial_guess, de_params.lower_bounds, de_params.upper_bounds);
- }
- if (de_params.threads == 0) {
- oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
- oss << ": There must be at least one thread.";
- throw std::invalid_argument(oss.str());
- }
- }
- template <typename ArgumentContainer, class Func, class URBG>
- ArgumentContainer differential_evolution(
- const Func cost_function, differential_evolution_parameters<ArgumentContainer> const &de_params, URBG &gen,
- std::invoke_result_t<Func, ArgumentContainer> target_value =
- std::numeric_limits<std::invoke_result_t<Func, ArgumentContainer>>::quiet_NaN(),
- std::atomic<bool> *cancellation = nullptr,
- std::vector<std::pair<ArgumentContainer, std::invoke_result_t<Func, ArgumentContainer>>> *queries = nullptr,
- std::atomic<std::invoke_result_t<Func, ArgumentContainer>> *current_minimum_cost = nullptr) {
- using Real = typename ArgumentContainer::value_type;
- using DimensionlessReal = decltype(Real()/Real());
- using ResultType = std::invoke_result_t<Func, ArgumentContainer>;
- using std::clamp;
- using std::isnan;
- using std::round;
- using std::uniform_real_distribution;
- validate_differential_evolution_parameters(de_params);
- const size_t dimension = de_params.lower_bounds.size();
- auto NP = de_params.NP;
- auto population = detail::random_initial_population(de_params.lower_bounds, de_params.upper_bounds, NP, gen);
- if (de_params.initial_guess) {
- population[0] = *de_params.initial_guess;
- }
- std::vector<ResultType> cost(NP, std::numeric_limits<ResultType>::quiet_NaN());
- std::atomic<bool> target_attained = false;
- // This mutex is only used if the queries are stored:
- std::mutex mt;
- std::vector<std::thread> thread_pool;
- auto const threads = de_params.threads;
- for (size_t j = 0; j < threads; ++j) {
- // Note that if some members of the population take way longer to compute,
- // then this parallelization strategy is very suboptimal.
- // However, we tried using std::async (which should be robust to this particular problem),
- // but the overhead was just totally unacceptable on ARM Macs (the only platform tested).
- // As the economists say "there are no solutions, only tradeoffs".
- thread_pool.emplace_back([&, j]() {
- for (size_t i = j; i < cost.size(); i += threads) {
- cost[i] = cost_function(population[i]);
- if (current_minimum_cost && cost[i] < *current_minimum_cost) {
- *current_minimum_cost = cost[i];
- }
- if (queries) {
- std::scoped_lock lock(mt);
- queries->push_back(std::make_pair(population[i], cost[i]));
- }
- if (!isnan(target_value) && cost[i] <= target_value) {
- target_attained = true;
- }
- }
- });
- }
- for (auto &thread : thread_pool) {
- thread.join();
- }
- std::vector<ArgumentContainer> trial_vectors(NP);
- for (size_t i = 0; i < NP; ++i) {
- if constexpr (detail::has_resize_v<ArgumentContainer>) {
- trial_vectors[i].resize(dimension);
- }
- }
- std::vector<URBG> thread_generators(threads);
- for (size_t j = 0; j < threads; ++j) {
- thread_generators[j].seed(gen());
- }
- // std::vector<bool> isn't threadsafe!
- std::vector<int> updated_indices(NP, 0);
- for (size_t generation = 0; generation < de_params.max_generations; ++generation) {
- if (cancellation && *cancellation) {
- break;
- }
- if (target_attained) {
- break;
- }
- thread_pool.resize(0);
- for (size_t j = 0; j < threads; ++j) {
- thread_pool.emplace_back([&, j]() {
- auto& tlg = thread_generators[j];
- uniform_real_distribution<DimensionlessReal> unif01(DimensionlessReal(0), DimensionlessReal(1));
- for (size_t i = j; i < cost.size(); i += threads) {
- if (target_attained) {
- return;
- }
- if (cancellation && *cancellation) {
- return;
- }
- size_t r1, r2, r3;
- do {
- r1 = tlg() % NP;
- } while (r1 == i);
- do {
- r2 = tlg() % NP;
- } while (r2 == i || r2 == r1);
- do {
- r3 = tlg() % NP;
- } while (r3 == i || r3 == r2 || r3 == r1);
- for (size_t k = 0; k < dimension; ++k) {
- // See equation (4) of the reference:
- auto guaranteed_changed_idx = tlg() % dimension;
- if (unif01(tlg) < de_params.crossover_probability || k == guaranteed_changed_idx) {
- auto tmp = population[r1][k] + de_params.mutation_factor * (population[r2][k] - population[r3][k]);
- auto const &lb = de_params.lower_bounds[k];
- auto const &ub = de_params.upper_bounds[k];
- // Some others recommend regenerating the indices rather than clamping;
- // I dunno seems like it could get stuck regenerating . . .
- trial_vectors[i][k] = clamp(tmp, lb, ub);
- } else {
- trial_vectors[i][k] = population[i][k];
- }
- }
- auto const trial_cost = cost_function(trial_vectors[i]);
- if (isnan(trial_cost)) {
- continue;
- }
- if (queries) {
- std::scoped_lock lock(mt);
- queries->push_back(std::make_pair(trial_vectors[i], trial_cost));
- }
- if (trial_cost < cost[i] || isnan(cost[i])) {
- cost[i] = trial_cost;
- if (!isnan(target_value) && cost[i] <= target_value) {
- target_attained = true;
- }
- if (current_minimum_cost && cost[i] < *current_minimum_cost) {
- *current_minimum_cost = cost[i];
- }
- // Can't do this! It's a race condition!
- //population[i] = trial_vectors[i];
- // Instead mark all the indices that need to be updated:
- updated_indices[i] = 1;
- }
- }
- });
- }
- for (auto &thread : thread_pool) {
- thread.join();
- }
- for (size_t i = 0; i < NP; ++i) {
- if (updated_indices[i]) {
- population[i] = trial_vectors[i];
- updated_indices[i] = 0;
- }
- }
- }
- auto it = std::min_element(cost.begin(), cost.end());
- return population[std::distance(cost.begin(), it)];
- }
- } // namespace boost::math::optimization
- #endif
|