123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934 |
- // boost\math\distributions\non_central_beta.hpp
- // Copyright John Maddock 2008.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0.
- // (See accompanying file LICENSE_1_0.txt
- // or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_SPECIAL_NON_CENTRAL_BETA_HPP
- #define BOOST_MATH_SPECIAL_NON_CENTRAL_BETA_HPP
- #include <boost/math/distributions/fwd.hpp>
- #include <boost/math/special_functions/beta.hpp> // for incomplete gamma. gamma_q
- #include <boost/math/distributions/complement.hpp> // complements
- #include <boost/math/distributions/beta.hpp> // central distribution
- #include <boost/math/distributions/detail/generic_mode.hpp>
- #include <boost/math/distributions/detail/common_error_handling.hpp> // error checks
- #include <boost/math/special_functions/fpclassify.hpp> // isnan.
- #include <boost/math/special_functions/trunc.hpp>
- #include <boost/math/tools/roots.hpp> // for root finding.
- #include <boost/math/tools/series.hpp>
- namespace boost
- {
- namespace math
- {
- template <class RealType, class Policy>
- class non_central_beta_distribution;
- namespace detail{
- template <class T, class Policy>
- T non_central_beta_p(T a, T b, T lam, T x, T y, const Policy& pol, T init_val = 0)
- {
- BOOST_MATH_STD_USING
- using namespace boost::math;
- //
- // Variables come first:
- //
- std::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
- T errtol = boost::math::policies::get_epsilon<T, Policy>();
- T l2 = lam / 2;
- //
- // k is the starting point for iteration, and is the
- // maximum of the poisson weighting term,
- // note that unlike other similar code, we do not set
- // k to zero, when l2 is small, as forward iteration
- // is unstable:
- //
- long long k = lltrunc(l2);
- if(k == 0)
- k = 1;
- // Starting Poisson weight:
- T pois = gamma_p_derivative(T(k+1), l2, pol);
- if(pois == 0)
- return init_val;
- // recurance term:
- T xterm;
- // Starting beta term:
- T beta = x < y
- ? detail::ibeta_imp(T(a + k), b, x, pol, false, true, &xterm)
- : detail::ibeta_imp(b, T(a + k), y, pol, true, true, &xterm);
- xterm *= y / (a + b + k - 1);
- T poisf(pois), betaf(beta), xtermf(xterm);
- T sum = init_val;
- if((beta == 0) && (xterm == 0))
- return init_val;
- //
- // Backwards recursion first, this is the stable
- // direction for recursion:
- //
- T last_term = 0;
- std::uintmax_t count = k;
- for(auto i = k; i >= 0; --i)
- {
- T term = beta * pois;
- sum += term;
- if(((fabs(term/sum) < errtol) && (last_term >= term)) || (term == 0))
- {
- count = k - i;
- break;
- }
- pois *= i / l2;
- beta += xterm;
- if (a + b + i != 2)
- {
- xterm *= (a + i - 1) / (x * (a + b + i - 2));
- }
-
- last_term = term;
- }
- for(auto i = k + 1; ; ++i)
- {
- poisf *= l2 / i;
- xtermf *= (x * (a + b + i - 2)) / (a + i - 1);
- betaf -= xtermf;
- T term = poisf * betaf;
- sum += term;
- if((fabs(term/sum) < errtol) || (term == 0))
- {
- break;
- }
- if(static_cast<std::uintmax_t>(count + i - k) > max_iter)
- {
- return policies::raise_evaluation_error("cdf(non_central_beta_distribution<%1%>, %1%)", "Series did not converge, closest value was %1%", sum, pol); // LCOV_EXCL_LINE
- }
- }
- return sum;
- }
- template <class T, class Policy>
- T non_central_beta_q(T a, T b, T lam, T x, T y, const Policy& pol, T init_val = 0)
- {
- BOOST_MATH_STD_USING
- using namespace boost::math;
- //
- // Variables come first:
- //
- std::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
- T errtol = boost::math::policies::get_epsilon<T, Policy>();
- T l2 = lam / 2;
- //
- // k is the starting point for iteration, and is the
- // maximum of the poisson weighting term:
- //
- long long k = lltrunc(l2);
- T pois;
- if(k <= 30)
- {
- //
- // Might as well start at 0 since we'll likely have this number of terms anyway:
- //
- if(a + b > 1)
- k = 0;
- else if(k == 0)
- k = 1;
- }
- if(k == 0)
- {
- // Starting Poisson weight:
- pois = exp(-l2);
- }
- else
- {
- // Starting Poisson weight:
- pois = gamma_p_derivative(T(k+1), l2, pol);
- }
- if(pois == 0)
- return init_val;
- // recurance term:
- T xterm;
- // Starting beta term:
- T beta = x < y
- ? detail::ibeta_imp(T(a + k), b, x, pol, true, true, &xterm)
- : detail::ibeta_imp(b, T(a + k), y, pol, false, true, &xterm);
- xterm *= y / (a + b + k - 1);
- T poisf(pois), betaf(beta), xtermf(xterm);
- T sum = init_val;
- if((beta == 0) && (xterm == 0))
- return init_val;
- //
- // Forwards recursion first, this is the stable
- // direction for recursion, and the location
- // of the bulk of the sum:
- //
- T last_term = 0;
- std::uintmax_t count = 0;
- for(auto i = k + 1; ; ++i)
- {
- poisf *= l2 / i;
- xtermf *= (x * (a + b + i - 2)) / (a + i - 1);
- betaf += xtermf;
- T term = poisf * betaf;
- sum += term;
- if((fabs(term/sum) < errtol) && (last_term >= term))
- {
- count = i - k;
- break;
- }
- if(static_cast<std::uintmax_t>(i - k) > max_iter)
- {
- return policies::raise_evaluation_error("cdf(non_central_beta_distribution<%1%>, %1%)", "Series did not converge, closest value was %1%", sum, pol); // LCOV_EXCL_LINE
- }
- last_term = term;
- }
- for(auto i = k; i >= 0; --i)
- {
- T term = beta * pois;
- sum += term;
- if(fabs(term/sum) < errtol)
- {
- break;
- }
- if(static_cast<std::uintmax_t>(count + k - i) > max_iter)
- {
- return policies::raise_evaluation_error("cdf(non_central_beta_distribution<%1%>, %1%)", "Series did not converge, closest value was %1%", sum, pol); // LCOV_EXCL_LINE
- }
- pois *= i / l2;
- beta -= xterm;
- if (a + b + i - 2 != 0)
- {
- xterm *= (a + i - 1) / (x * (a + b + i - 2));
- }
- }
- return sum;
- }
- template <class RealType, class Policy>
- inline RealType non_central_beta_cdf(RealType x, RealType y, RealType a, RealType b, RealType l, bool invert, const Policy&)
- {
- typedef typename policies::evaluation<RealType, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- BOOST_MATH_STD_USING
- if(x == 0)
- return invert ? 1.0f : 0.0f;
- if(y == 0)
- return invert ? 0.0f : 1.0f;
- value_type result;
- value_type c = a + b + l / 2;
- value_type cross = 1 - (b / c) * (1 + l / (2 * c * c));
- if(l == 0)
- result = cdf(boost::math::beta_distribution<RealType, Policy>(a, b), x);
- else if(x > cross)
- {
- // Complement is the smaller of the two:
- result = detail::non_central_beta_q(
- static_cast<value_type>(a),
- static_cast<value_type>(b),
- static_cast<value_type>(l),
- static_cast<value_type>(x),
- static_cast<value_type>(y),
- forwarding_policy(),
- static_cast<value_type>(invert ? 0 : -1));
- invert = !invert;
- }
- else
- {
- result = detail::non_central_beta_p(
- static_cast<value_type>(a),
- static_cast<value_type>(b),
- static_cast<value_type>(l),
- static_cast<value_type>(x),
- static_cast<value_type>(y),
- forwarding_policy(),
- static_cast<value_type>(invert ? -1 : 0));
- }
- if(invert)
- result = -result;
- return policies::checked_narrowing_cast<RealType, forwarding_policy>(
- result,
- "boost::math::non_central_beta_cdf<%1%>(%1%, %1%, %1%)");
- }
- template <class T, class Policy>
- struct nc_beta_quantile_functor
- {
- nc_beta_quantile_functor(const non_central_beta_distribution<T,Policy>& d, T t, bool c)
- : dist(d), target(t), comp(c) {}
- T operator()(const T& x)
- {
- return comp ?
- T(target - cdf(complement(dist, x)))
- : T(cdf(dist, x) - target);
- }
- private:
- non_central_beta_distribution<T,Policy> dist;
- T target;
- bool comp;
- };
- //
- // This is more or less a copy of bracket_and_solve_root, but
- // modified to search only the interval [0,1] using similar
- // heuristics.
- //
- template <class F, class T, class Tol, class Policy>
- std::pair<T, T> bracket_and_solve_root_01(F f, const T& guess, T factor, bool rising, Tol tol, std::uintmax_t& max_iter, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- static const char* function = "boost::math::tools::bracket_and_solve_root_01<%1%>";
- //
- // Set up initial brackets:
- //
- T a = guess;
- T b = a;
- T fa = f(a);
- T fb = fa;
- //
- // Set up invocation count:
- //
- std::uintmax_t count = max_iter - 1;
- if((fa < 0) == (guess < 0 ? !rising : rising))
- {
- //
- // Zero is to the right of b, so walk upwards
- // until we find it:
- //
- while((boost::math::sign)(fb) == (boost::math::sign)(fa))
- {
- if(count == 0)
- {
- b = policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, pol); // LCOV_EXCL_LINE
- return std::make_pair(a, b);
- }
- //
- // Heuristic: every 20 iterations we double the growth factor in case the
- // initial guess was *really* bad !
- //
- if((max_iter - count) % 20 == 0)
- factor *= 2;
- //
- // Now go ahead and move are guess by "factor",
- // we do this by reducing 1-guess by factor:
- //
- a = b;
- fa = fb;
- b = 1 - ((1 - b) / factor);
- fb = f(b);
- --count;
- BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
- }
- }
- else
- {
- //
- // Zero is to the left of a, so walk downwards
- // until we find it:
- //
- while((boost::math::sign)(fb) == (boost::math::sign)(fa))
- {
- if(fabs(a) < tools::min_value<T>())
- {
- // Escape route just in case the answer is zero!
- max_iter -= count;
- max_iter += 1;
- return a > 0 ? std::make_pair(T(0), T(a)) : std::make_pair(T(a), T(0));
- }
- if(count == 0)
- {
- a = policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", a, pol); // LCOV_EXCL_LINE
- return std::make_pair(a, b);
- }
- //
- // Heuristic: every 20 iterations we double the growth factor in case the
- // initial guess was *really* bad !
- //
- if((max_iter - count) % 20 == 0)
- factor *= 2;
- //
- // Now go ahead and move are guess by "factor":
- //
- b = a;
- fb = fa;
- a /= factor;
- fa = f(a);
- --count;
- BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
- }
- }
- max_iter -= count;
- max_iter += 1;
- std::pair<T, T> r = toms748_solve(
- f,
- (a < 0 ? b : a),
- (a < 0 ? a : b),
- (a < 0 ? fb : fa),
- (a < 0 ? fa : fb),
- tol,
- count,
- pol);
- max_iter += count;
- BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count);
- return r;
- }
- template <class RealType, class Policy>
- RealType nc_beta_quantile(const non_central_beta_distribution<RealType, Policy>& dist, const RealType& p, bool comp)
- {
- static const char* function = "quantile(non_central_beta_distribution<%1%>, %1%)";
- typedef typename policies::evaluation<RealType, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- value_type a = dist.alpha();
- value_type b = dist.beta();
- value_type l = dist.non_centrality();
- value_type r;
- if(!beta_detail::check_alpha(
- function,
- a, &r, Policy())
- ||
- !beta_detail::check_beta(
- function,
- b, &r, Policy())
- ||
- !detail::check_non_centrality(
- function,
- l,
- &r,
- Policy())
- ||
- !detail::check_probability(
- function,
- static_cast<value_type>(p),
- &r,
- Policy()))
- return static_cast<RealType>(r);
- //
- // Special cases first:
- //
- if(p == 0)
- return comp
- ? 1.0f
- : 0.0f;
- if(p == 1)
- return !comp
- ? 1.0f
- : 0.0f;
- value_type c = a + b + l / 2;
- value_type mean = 1 - (b / c) * (1 + l / (2 * c * c));
- /*
- //
- // Calculate a normal approximation to the quantile,
- // uses mean and variance approximations from:
- // Algorithm AS 310:
- // Computing the Non-Central Beta Distribution Function
- // R. Chattamvelli; R. Shanmugam
- // Applied Statistics, Vol. 46, No. 1. (1997), pp. 146-156.
- //
- // Unfortunately, when this is wrong it tends to be *very*
- // wrong, so it's disabled for now, even though it often
- // gets the initial guess quite close. Probably we could
- // do much better by factoring in the skewness if only
- // we could calculate it....
- //
- value_type delta = l / 2;
- value_type delta2 = delta * delta;
- value_type delta3 = delta * delta2;
- value_type delta4 = delta2 * delta2;
- value_type G = c * (c + 1) + delta;
- value_type alpha = a + b;
- value_type alpha2 = alpha * alpha;
- value_type eta = (2 * alpha + 1) * (2 * alpha + 1) + 1;
- value_type H = 3 * alpha2 + 5 * alpha + 2;
- value_type F = alpha2 * (alpha + 1) + H * delta
- + (2 * alpha + 4) * delta2 + delta3;
- value_type P = (3 * alpha + 1) * (9 * alpha + 17)
- + 2 * alpha * (3 * alpha + 2) * (3 * alpha + 4) + 15;
- value_type Q = 54 * alpha2 + 162 * alpha + 130;
- value_type R = 6 * (6 * alpha + 11);
- value_type D = delta
- * (H * H + 2 * P * delta + Q * delta2 + R * delta3 + 9 * delta4);
- value_type variance = (b / G)
- * (1 + delta * (l * l + 3 * l + eta) / (G * G))
- - (b * b / F) * (1 + D / (F * F));
- value_type sd = sqrt(variance);
- value_type guess = comp
- ? quantile(complement(normal_distribution<RealType, Policy>(static_cast<RealType>(mean), static_cast<RealType>(sd)), p))
- : quantile(normal_distribution<RealType, Policy>(static_cast<RealType>(mean), static_cast<RealType>(sd)), p);
- if(guess >= 1)
- guess = mean;
- if(guess <= tools::min_value<value_type>())
- guess = mean;
- */
- value_type guess = mean;
- detail::nc_beta_quantile_functor<value_type, Policy>
- f(non_central_beta_distribution<value_type, Policy>(a, b, l), p, comp);
- tools::eps_tolerance<value_type> tol(policies::digits<RealType, Policy>());
- std::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
- std::pair<value_type, value_type> ir
- = bracket_and_solve_root_01(
- f, guess, value_type(2.5), true, tol,
- max_iter, Policy());
- value_type result = ir.first + (ir.second - ir.first) / 2;
- if(max_iter >= policies::get_max_root_iterations<Policy>())
- {
- // LCOV_EXCL_START
- return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"
- " either there is no answer to quantile of the non central beta distribution"
- " or the answer is infinite. Current best guess is %1%",
- policies::checked_narrowing_cast<RealType, forwarding_policy>(
- result,
- function), Policy());
- // LCOV_EXCL_STOP
- }
- return policies::checked_narrowing_cast<RealType, forwarding_policy>(
- result,
- function);
- }
- template <class T, class Policy>
- T non_central_beta_pdf(T a, T b, T lam, T x, T y, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- //
- // Special cases:
- //
- if((x == 0) || (y == 0))
- return 0;
- //
- // Variables come first:
- //
- std::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
- T errtol = boost::math::policies::get_epsilon<T, Policy>();
- T l2 = lam / 2;
- //
- // k is the starting point for iteration, and is the
- // maximum of the poisson weighting term:
- //
- long long k = lltrunc(l2);
- // Starting Poisson weight:
- T pois = gamma_p_derivative(T(k+1), l2, pol);
- // Starting beta term:
- T beta = x < y ?
- ibeta_derivative(a + k, b, x, pol)
- : ibeta_derivative(b, a + k, y, pol);
- T sum = 0;
- T poisf(pois);
- T betaf(beta);
- //
- // Stable backwards recursion first:
- //
- std::uintmax_t count = k;
- for(auto i = k; i >= 0; --i)
- {
- T term = beta * pois;
- sum += term;
- if((fabs(term/sum) < errtol) || (term == 0))
- {
- count = k - i;
- break;
- }
- pois *= i / l2;
- if (a + b + i != 1)
- {
- beta *= (a + i - 1) / (x * (a + i + b - 1));
- }
- }
- for(auto i = k + 1; ; ++i)
- {
- poisf *= l2 / i;
- betaf *= x * (a + b + i - 1) / (a + i - 1);
- T term = poisf * betaf;
- sum += term;
- if((fabs(term/sum) < errtol) || (term == 0))
- {
- break;
- }
- if(static_cast<std::uintmax_t>(count + i - k) > max_iter)
- {
- return policies::raise_evaluation_error("pdf(non_central_beta_distribution<%1%>, %1%)", "Series did not converge, closest value was %1%", sum, pol); // LCOV_EXCL_LINE
- }
- }
- return sum;
- }
- template <class RealType, class Policy>
- RealType nc_beta_pdf(const non_central_beta_distribution<RealType, Policy>& dist, const RealType& x)
- {
- BOOST_MATH_STD_USING
- static const char* function = "pdf(non_central_beta_distribution<%1%>, %1%)";
- typedef typename policies::evaluation<RealType, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- value_type a = dist.alpha();
- value_type b = dist.beta();
- value_type l = dist.non_centrality();
- value_type r;
- if(!beta_detail::check_alpha(
- function,
- a, &r, Policy())
- ||
- !beta_detail::check_beta(
- function,
- b, &r, Policy())
- ||
- !detail::check_non_centrality(
- function,
- l,
- &r,
- Policy())
- ||
- !beta_detail::check_x(
- function,
- static_cast<value_type>(x),
- &r,
- Policy()))
- return static_cast<RealType>(r);
- if(l == 0)
- return pdf(boost::math::beta_distribution<RealType, Policy>(dist.alpha(), dist.beta()), x);
- return policies::checked_narrowing_cast<RealType, forwarding_policy>(
- non_central_beta_pdf(a, b, l, static_cast<value_type>(x), value_type(1 - static_cast<value_type>(x)), forwarding_policy()),
- "function");
- }
- template <class T>
- struct hypergeometric_2F2_sum
- {
- typedef T result_type;
- hypergeometric_2F2_sum(T a1_, T a2_, T b1_, T b2_, T z_) : a1(a1_), a2(a2_), b1(b1_), b2(b2_), z(z_), term(1), k(0) {}
- T operator()()
- {
- T result = term;
- term *= a1 * a2 / (b1 * b2);
- a1 += 1;
- a2 += 1;
- b1 += 1;
- b2 += 1;
- k += 1;
- term /= k;
- term *= z;
- return result;
- }
- T a1, a2, b1, b2, z, term, k;
- };
- template <class T, class Policy>
- T hypergeometric_2F2(T a1, T a2, T b1, T b2, T z, const Policy& pol)
- {
- typedef typename policies::evaluation<T, Policy>::type value_type;
- const char* function = "boost::math::detail::hypergeometric_2F2<%1%>(%1%,%1%,%1%,%1%,%1%)";
- hypergeometric_2F2_sum<value_type> s(a1, a2, b1, b2, z);
- std::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
- value_type result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<value_type, Policy>(), max_iter);
- policies::check_series_iterations<T>(function, max_iter, pol);
- return policies::checked_narrowing_cast<T, Policy>(result, function);
- }
- } // namespace detail
- template <class RealType = double, class Policy = policies::policy<> >
- class non_central_beta_distribution
- {
- public:
- typedef RealType value_type;
- typedef Policy policy_type;
- non_central_beta_distribution(RealType a_, RealType b_, RealType lambda) : a(a_), b(b_), ncp(lambda)
- {
- const char* function = "boost::math::non_central_beta_distribution<%1%>::non_central_beta_distribution(%1%,%1%)";
- RealType r;
- beta_detail::check_alpha(
- function,
- a, &r, Policy());
- beta_detail::check_beta(
- function,
- b, &r, Policy());
- detail::check_non_centrality(
- function,
- lambda,
- &r,
- Policy());
- } // non_central_beta_distribution constructor.
- RealType alpha() const
- { // Private data getter function.
- return a;
- }
- RealType beta() const
- { // Private data getter function.
- return b;
- }
- RealType non_centrality() const
- { // Private data getter function.
- return ncp;
- }
- private:
- // Data member, initialized by constructor.
- RealType a; // alpha.
- RealType b; // beta.
- RealType ncp; // non-centrality parameter
- }; // template <class RealType, class Policy> class non_central_beta_distribution
- typedef non_central_beta_distribution<double> non_central_beta; // Reserved name of type double.
- #ifdef __cpp_deduction_guides
- template <class RealType>
- non_central_beta_distribution(RealType,RealType,RealType)->non_central_beta_distribution<typename boost::math::tools::promote_args<RealType>::type>;
- #endif
- // Non-member functions to give properties of the distribution.
- template <class RealType, class Policy>
- inline const std::pair<RealType, RealType> range(const non_central_beta_distribution<RealType, Policy>& /* dist */)
- { // Range of permissible values for random variable k.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(static_cast<RealType>(0), static_cast<RealType>(1));
- }
- template <class RealType, class Policy>
- inline const std::pair<RealType, RealType> support(const non_central_beta_distribution<RealType, Policy>& /* dist */)
- { // Range of supported values for random variable k.
- // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(static_cast<RealType>(0), static_cast<RealType>(1));
- }
- template <class RealType, class Policy>
- inline RealType mode(const non_central_beta_distribution<RealType, Policy>& dist)
- { // mode.
- static const char* function = "mode(non_central_beta_distribution<%1%> const&)";
- RealType a = dist.alpha();
- RealType b = dist.beta();
- RealType l = dist.non_centrality();
- RealType r;
- if(!beta_detail::check_alpha(
- function,
- a, &r, Policy())
- ||
- !beta_detail::check_beta(
- function,
- b, &r, Policy())
- ||
- !detail::check_non_centrality(
- function,
- l,
- &r,
- Policy()))
- return static_cast<RealType>(r);
- RealType c = a + b + l / 2;
- RealType mean = 1 - (b / c) * (1 + l / (2 * c * c));
- return detail::generic_find_mode_01(
- dist,
- mean,
- function);
- }
- //
- // We don't have the necessary information to implement
- // these at present. These are just disabled for now,
- // prototypes retained so we can fill in the blanks
- // later:
- //
- template <class RealType, class Policy>
- inline RealType mean(const non_central_beta_distribution<RealType, Policy>& dist)
- {
- BOOST_MATH_STD_USING
- RealType a = dist.alpha();
- RealType b = dist.beta();
- RealType d = dist.non_centrality();
- RealType apb = a + b;
- return exp(-d / 2) * a * detail::hypergeometric_2F2<RealType, Policy>(1 + a, apb, a, 1 + apb, d / 2, Policy()) / apb;
- } // mean
- template <class RealType, class Policy>
- inline RealType variance(const non_central_beta_distribution<RealType, Policy>& dist)
- {
- //
- // Relative error of this function may be arbitrarily large... absolute
- // error will be small however... that's the best we can do for now.
- //
- BOOST_MATH_STD_USING
- RealType a = dist.alpha();
- RealType b = dist.beta();
- RealType d = dist.non_centrality();
- RealType apb = a + b;
- RealType result = detail::hypergeometric_2F2(RealType(1 + a), apb, a, RealType(1 + apb), RealType(d / 2), Policy());
- result *= result * -exp(-d) * a * a / (apb * apb);
- result += exp(-d / 2) * a * (1 + a) * detail::hypergeometric_2F2(RealType(2 + a), apb, a, RealType(2 + apb), RealType(d / 2), Policy()) / (apb * (1 + apb));
- return result;
- }
- // RealType standard_deviation(const non_central_beta_distribution<RealType, Policy>& dist)
- // standard_deviation provided by derived accessors.
- template <class RealType, class Policy>
- inline RealType skewness(const non_central_beta_distribution<RealType, Policy>& /*dist*/)
- { // skewness = sqrt(l).
- const char* function = "boost::math::non_central_beta_distribution<%1%>::skewness()";
- typedef typename Policy::assert_undefined_type assert_type;
- static_assert(assert_type::value == 0, "Assert type is undefined.");
- return policies::raise_evaluation_error<RealType>(function, "This function is not yet implemented, the only sensible result is %1%.", // LCOV_EXCL_LINE
- std::numeric_limits<RealType>::quiet_NaN(), Policy()); // infinity? LCOV_EXCL_LINE
- }
- template <class RealType, class Policy>
- inline RealType kurtosis_excess(const non_central_beta_distribution<RealType, Policy>& /*dist*/)
- {
- const char* function = "boost::math::non_central_beta_distribution<%1%>::kurtosis_excess()";
- typedef typename Policy::assert_undefined_type assert_type;
- static_assert(assert_type::value == 0, "Assert type is undefined.");
- return policies::raise_evaluation_error<RealType>(function, "This function is not yet implemented, the only sensible result is %1%.", // LCOV_EXCL_LINE
- std::numeric_limits<RealType>::quiet_NaN(), Policy()); // infinity? LCOV_EXCL_LINE
- } // kurtosis_excess
- template <class RealType, class Policy>
- inline RealType kurtosis(const non_central_beta_distribution<RealType, Policy>& dist)
- {
- return kurtosis_excess(dist) + 3;
- }
- template <class RealType, class Policy>
- inline RealType pdf(const non_central_beta_distribution<RealType, Policy>& dist, const RealType& x)
- { // Probability Density/Mass Function.
- return detail::nc_beta_pdf(dist, x);
- } // pdf
- template <class RealType, class Policy>
- RealType cdf(const non_central_beta_distribution<RealType, Policy>& dist, const RealType& x)
- {
- const char* function = "boost::math::non_central_beta_distribution<%1%>::cdf(%1%)";
- RealType a = dist.alpha();
- RealType b = dist.beta();
- RealType l = dist.non_centrality();
- RealType r;
- if(!beta_detail::check_alpha(
- function,
- a, &r, Policy())
- ||
- !beta_detail::check_beta(
- function,
- b, &r, Policy())
- ||
- !detail::check_non_centrality(
- function,
- l,
- &r,
- Policy())
- ||
- !beta_detail::check_x(
- function,
- x,
- &r,
- Policy()))
- return static_cast<RealType>(r);
- if(l == 0)
- return cdf(beta_distribution<RealType, Policy>(a, b), x);
- return detail::non_central_beta_cdf(x, RealType(1 - x), a, b, l, false, Policy());
- } // cdf
- template <class RealType, class Policy>
- RealType cdf(const complemented2_type<non_central_beta_distribution<RealType, Policy>, RealType>& c)
- { // Complemented Cumulative Distribution Function
- const char* function = "boost::math::non_central_beta_distribution<%1%>::cdf(%1%)";
- non_central_beta_distribution<RealType, Policy> const& dist = c.dist;
- RealType a = dist.alpha();
- RealType b = dist.beta();
- RealType l = dist.non_centrality();
- RealType x = c.param;
- RealType r;
- if(!beta_detail::check_alpha(
- function,
- a, &r, Policy())
- ||
- !beta_detail::check_beta(
- function,
- b, &r, Policy())
- ||
- !detail::check_non_centrality(
- function,
- l,
- &r,
- Policy())
- ||
- !beta_detail::check_x(
- function,
- x,
- &r,
- Policy()))
- return static_cast<RealType>(r);
- if(l == 0)
- return cdf(complement(beta_distribution<RealType, Policy>(a, b), x));
- return detail::non_central_beta_cdf(x, RealType(1 - x), a, b, l, true, Policy());
- } // ccdf
- template <class RealType, class Policy>
- inline RealType quantile(const non_central_beta_distribution<RealType, Policy>& dist, const RealType& p)
- { // Quantile (or Percent Point) function.
- return detail::nc_beta_quantile(dist, p, false);
- } // quantile
- template <class RealType, class Policy>
- inline RealType quantile(const complemented2_type<non_central_beta_distribution<RealType, Policy>, RealType>& c)
- { // Quantile (or Percent Point) function.
- return detail::nc_beta_quantile(c.dist, c.param, true);
- } // quantile complement.
- } // namespace math
- } // namespace boost
- // This include must be at the end, *after* the accessors
- // for this distribution have been defined, in order to
- // keep compilers that support two-phase lookup happy.
- #include <boost/math/distributions/detail/derived_accessors.hpp>
- #endif // BOOST_MATH_SPECIAL_NON_CENTRAL_BETA_HPP
|