123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607 |
- // boost\math\special_functions\negative_binomial.hpp
- // Copyright Paul A. Bristow 2007.
- // Copyright John Maddock 2007.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0.
- // (See accompanying file LICENSE_1_0.txt
- // or copy at http://www.boost.org/LICENSE_1_0.txt)
- // http://en.wikipedia.org/wiki/negative_binomial_distribution
- // http://mathworld.wolfram.com/NegativeBinomialDistribution.html
- // http://documents.wolfram.com/teachersedition/Teacher/Statistics/DiscreteDistributions.html
- // The negative binomial distribution NegativeBinomialDistribution[n, p]
- // is the distribution of the number (k) of failures that occur in a sequence of trials before
- // r successes have occurred, where the probability of success in each trial is p.
- // In a sequence of Bernoulli trials or events
- // (independent, yes or no, succeed or fail) with success_fraction probability p,
- // negative_binomial is the probability that k or fewer failures
- // precede the r th trial's success.
- // random variable k is the number of failures (NOT the probability).
- // Negative_binomial distribution is a discrete probability distribution.
- // But note that the negative binomial distribution
- // (like others including the binomial, Poisson & Bernoulli)
- // is strictly defined as a discrete function: only integral values of k are envisaged.
- // However because of the method of calculation using a continuous gamma function,
- // it is convenient to treat it as if a continuous function,
- // and permit non-integral values of k.
- // However, by default the policy is to use discrete_quantile_policy.
- // To enforce the strict mathematical model, users should use conversion
- // on k outside this function to ensure that k is integral.
- // MATHCAD cumulative negative binomial pnbinom(k, n, p)
- // Implementation note: much greater speed, and perhaps greater accuracy,
- // might be achieved for extreme values by using a normal approximation.
- // This is NOT been tested or implemented.
- #ifndef BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP
- #define BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP
- #include <boost/math/distributions/fwd.hpp>
- #include <boost/math/special_functions/beta.hpp> // for ibeta(a, b, x) == Ix(a, b).
- #include <boost/math/distributions/complement.hpp> // complement.
- #include <boost/math/distributions/detail/common_error_handling.hpp> // error checks domain_error & logic_error.
- #include <boost/math/special_functions/fpclassify.hpp> // isnan.
- #include <boost/math/tools/roots.hpp> // for root finding.
- #include <boost/math/distributions/detail/inv_discrete_quantile.hpp>
- #include <limits> // using std::numeric_limits;
- #include <utility>
- #if defined (BOOST_MSVC)
- # pragma warning(push)
- // This believed not now necessary, so commented out.
- //# pragma warning(disable: 4702) // unreachable code.
- // in domain_error_imp in error_handling.
- #endif
- namespace boost
- {
- namespace math
- {
- namespace negative_binomial_detail
- {
- // Common error checking routines for negative binomial distribution functions:
- template <class RealType, class Policy>
- inline bool check_successes(const char* function, const RealType& r, RealType* result, const Policy& pol)
- {
- if( !(boost::math::isfinite)(r) || (r <= 0) )
- {
- *result = policies::raise_domain_error<RealType>(
- function,
- "Number of successes argument is %1%, but must be > 0 !", r, pol);
- return false;
- }
- return true;
- }
- template <class RealType, class Policy>
- inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol)
- {
- if( !(boost::math::isfinite)(p) || (p < 0) || (p > 1) )
- {
- *result = policies::raise_domain_error<RealType>(
- function,
- "Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol);
- return false;
- }
- return true;
- }
- template <class RealType, class Policy>
- inline bool check_dist(const char* function, const RealType& r, const RealType& p, RealType* result, const Policy& pol)
- {
- return check_success_fraction(function, p, result, pol)
- && check_successes(function, r, result, pol);
- }
- template <class RealType, class Policy>
- inline bool check_dist_and_k(const char* function, const RealType& r, const RealType& p, RealType k, RealType* result, const Policy& pol)
- {
- if(check_dist(function, r, p, result, pol) == false)
- {
- return false;
- }
- if( !(boost::math::isfinite)(k) || (k < 0) )
- { // Check k failures.
- *result = policies::raise_domain_error<RealType>(
- function,
- "Number of failures argument is %1%, but must be >= 0 !", k, pol);
- return false;
- }
- return true;
- } // Check_dist_and_k
- template <class RealType, class Policy>
- inline bool check_dist_and_prob(const char* function, const RealType& r, RealType p, RealType prob, RealType* result, const Policy& pol)
- {
- if((check_dist(function, r, p, result, pol) && detail::check_probability(function, prob, result, pol)) == false)
- {
- return false;
- }
- return true;
- } // check_dist_and_prob
- } // namespace negative_binomial_detail
- template <class RealType = double, class Policy = policies::policy<> >
- class negative_binomial_distribution
- {
- public:
- typedef RealType value_type;
- typedef Policy policy_type;
- negative_binomial_distribution(RealType r, RealType p) : m_r(r), m_p(p)
- { // Constructor.
- RealType result;
- negative_binomial_detail::check_dist(
- "negative_binomial_distribution<%1%>::negative_binomial_distribution",
- m_r, // Check successes r > 0.
- m_p, // Check success_fraction 0 <= p <= 1.
- &result, Policy());
- } // negative_binomial_distribution constructor.
- // Private data getter class member functions.
- RealType success_fraction() const
- { // Probability of success as fraction in range 0 to 1.
- return m_p;
- }
- RealType successes() const
- { // Total number of successes r.
- return m_r;
- }
- static RealType find_lower_bound_on_p(
- RealType trials,
- RealType successes,
- RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.
- {
- static const char* function = "boost::math::negative_binomial<%1%>::find_lower_bound_on_p";
- RealType result = 0; // of error checks.
- RealType failures = trials - successes;
- if(false == detail::check_probability(function, alpha, &result, Policy())
- && negative_binomial_detail::check_dist_and_k(
- function, successes, RealType(0), failures, &result, Policy()))
- {
- return result;
- }
- // Use complement ibeta_inv function for lower bound.
- // This is adapted from the corresponding binomial formula
- // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
- // This is a Clopper-Pearson interval, and may be overly conservative,
- // see also "A Simple Improved Inferential Method for Some
- // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY
- // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf
- //
- return ibeta_inv(successes, failures + 1, alpha, static_cast<RealType*>(nullptr), Policy());
- } // find_lower_bound_on_p
- static RealType find_upper_bound_on_p(
- RealType trials,
- RealType successes,
- RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.
- {
- static const char* function = "boost::math::negative_binomial<%1%>::find_upper_bound_on_p";
- RealType result = 0; // of error checks.
- RealType failures = trials - successes;
- if(false == negative_binomial_detail::check_dist_and_k(
- function, successes, RealType(0), failures, &result, Policy())
- && detail::check_probability(function, alpha, &result, Policy()))
- {
- return result;
- }
- if(failures == 0)
- return 1;
- // Use complement ibetac_inv function for upper bound.
- // Note adjusted failures value: *not* failures+1 as usual.
- // This is adapted from the corresponding binomial formula
- // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
- // This is a Clopper-Pearson interval, and may be overly conservative,
- // see also "A Simple Improved Inferential Method for Some
- // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY
- // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf
- //
- return ibetac_inv(successes, failures, alpha, static_cast<RealType*>(nullptr), Policy());
- } // find_upper_bound_on_p
- // Estimate number of trials :
- // "How many trials do I need to be P% sure of seeing k or fewer failures?"
- static RealType find_minimum_number_of_trials(
- RealType k, // number of failures (k >= 0).
- RealType p, // success fraction 0 <= p <= 1.
- RealType alpha) // risk level threshold 0 <= alpha <= 1.
- {
- static const char* function = "boost::math::negative_binomial<%1%>::find_minimum_number_of_trials";
- // Error checks:
- RealType result = 0;
- if(false == negative_binomial_detail::check_dist_and_k(
- function, RealType(1), p, k, &result, Policy())
- && detail::check_probability(function, alpha, &result, Policy()))
- { return result; }
- result = ibeta_inva(k + 1, p, alpha, Policy()); // returns n - k
- return result + k;
- } // RealType find_number_of_failures
- static RealType find_maximum_number_of_trials(
- RealType k, // number of failures (k >= 0).
- RealType p, // success fraction 0 <= p <= 1.
- RealType alpha) // risk level threshold 0 <= alpha <= 1.
- {
- static const char* function = "boost::math::negative_binomial<%1%>::find_maximum_number_of_trials";
- // Error checks:
- RealType result = 0;
- if(false == negative_binomial_detail::check_dist_and_k(
- function, RealType(1), p, k, &result, Policy())
- && detail::check_probability(function, alpha, &result, Policy()))
- { return result; }
- result = ibetac_inva(k + 1, p, alpha, Policy()); // returns n - k
- return result + k;
- } // RealType find_number_of_trials complemented
- private:
- RealType m_r; // successes.
- RealType m_p; // success_fraction
- }; // template <class RealType, class Policy> class negative_binomial_distribution
- typedef negative_binomial_distribution<double> negative_binomial; // Reserved name of type double.
- #ifdef __cpp_deduction_guides
- template <class RealType>
- negative_binomial_distribution(RealType,RealType)->negative_binomial_distribution<typename boost::math::tools::promote_args<RealType>::type>;
- #endif
- template <class RealType, class Policy>
- inline const std::pair<RealType, RealType> range(const negative_binomial_distribution<RealType, Policy>& /* dist */)
- { // Range of permissible values for random variable k.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer?
- }
- template <class RealType, class Policy>
- inline const std::pair<RealType, RealType> support(const negative_binomial_distribution<RealType, Policy>& /* dist */)
- { // Range of supported values for random variable k.
- // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer?
- }
- template <class RealType, class Policy>
- inline RealType mean(const negative_binomial_distribution<RealType, Policy>& dist)
- { // Mean of Negative Binomial distribution = r(1-p)/p.
- return dist.successes() * (1 - dist.success_fraction() ) / dist.success_fraction();
- } // mean
- //template <class RealType, class Policy>
- //inline RealType median(const negative_binomial_distribution<RealType, Policy>& dist)
- //{ // Median of negative_binomial_distribution is not defined.
- // return policies::raise_domain_error<RealType>(BOOST_CURRENT_FUNCTION, "Median is not implemented, result is %1%!", std::numeric_limits<RealType>::quiet_NaN());
- //} // median
- // Now implemented via quantile(half) in derived accessors.
- template <class RealType, class Policy>
- inline RealType mode(const negative_binomial_distribution<RealType, Policy>& dist)
- { // Mode of Negative Binomial distribution = floor[(r-1) * (1 - p)/p]
- BOOST_MATH_STD_USING // ADL of std functions.
- return floor((dist.successes() -1) * (1 - dist.success_fraction()) / dist.success_fraction());
- } // mode
- template <class RealType, class Policy>
- inline RealType skewness(const negative_binomial_distribution<RealType, Policy>& dist)
- { // skewness of Negative Binomial distribution = 2-p / (sqrt(r(1-p))
- BOOST_MATH_STD_USING // ADL of std functions.
- RealType p = dist.success_fraction();
- RealType r = dist.successes();
- return (2 - p) /
- sqrt(r * (1 - p));
- } // skewness
- template <class RealType, class Policy>
- inline RealType kurtosis(const negative_binomial_distribution<RealType, Policy>& dist)
- { // kurtosis of Negative Binomial distribution
- // http://en.wikipedia.org/wiki/Negative_binomial is kurtosis_excess so add 3
- RealType p = dist.success_fraction();
- RealType r = dist.successes();
- return 3 + (6 / r) + ((p * p) / (r * (1 - p)));
- } // kurtosis
- template <class RealType, class Policy>
- inline RealType kurtosis_excess(const negative_binomial_distribution<RealType, Policy>& dist)
- { // kurtosis excess of Negative Binomial distribution
- // http://mathworld.wolfram.com/Kurtosis.html table of kurtosis_excess
- RealType p = dist.success_fraction();
- RealType r = dist.successes();
- return (6 - p * (6-p)) / (r * (1-p));
- } // kurtosis_excess
- template <class RealType, class Policy>
- inline RealType variance(const negative_binomial_distribution<RealType, Policy>& dist)
- { // Variance of Binomial distribution = r (1-p) / p^2.
- return dist.successes() * (1 - dist.success_fraction())
- / (dist.success_fraction() * dist.success_fraction());
- } // variance
- // RealType standard_deviation(const negative_binomial_distribution<RealType, Policy>& dist)
- // standard_deviation provided by derived accessors.
- // RealType hazard(const negative_binomial_distribution<RealType, Policy>& dist)
- // hazard of Negative Binomial distribution provided by derived accessors.
- // RealType chf(const negative_binomial_distribution<RealType, Policy>& dist)
- // chf of Negative Binomial distribution provided by derived accessors.
- template <class RealType, class Policy>
- inline RealType pdf(const negative_binomial_distribution<RealType, Policy>& dist, const RealType& k)
- { // Probability Density/Mass Function.
- BOOST_FPU_EXCEPTION_GUARD
- static const char* function = "boost::math::pdf(const negative_binomial_distribution<%1%>&, %1%)";
- RealType r = dist.successes();
- RealType p = dist.success_fraction();
- RealType result = 0;
- if(false == negative_binomial_detail::check_dist_and_k(
- function,
- r,
- dist.success_fraction(),
- k,
- &result, Policy()))
- {
- return result;
- }
- result = (p/(r + k)) * ibeta_derivative(r, static_cast<RealType>(k+1), p, Policy());
- // Equivalent to:
- // return exp(lgamma(r + k) - lgamma(r) - lgamma(k+1)) * pow(p, r) * pow((1-p), k);
- return result;
- } // negative_binomial_pdf
- template <class RealType, class Policy>
- inline RealType cdf(const negative_binomial_distribution<RealType, Policy>& dist, const RealType& k)
- { // Cumulative Distribution Function of Negative Binomial.
- static const char* function = "boost::math::cdf(const negative_binomial_distribution<%1%>&, %1%)";
- using boost::math::ibeta; // Regularized incomplete beta function.
- // k argument may be integral, signed, or unsigned, or floating point.
- // If necessary, it has already been promoted from an integral type.
- RealType p = dist.success_fraction();
- RealType r = dist.successes();
- // Error check:
- RealType result = 0;
- if(false == negative_binomial_detail::check_dist_and_k(
- function,
- r,
- dist.success_fraction(),
- k,
- &result, Policy()))
- {
- return result;
- }
- RealType probability = ibeta(r, static_cast<RealType>(k+1), p, Policy());
- // Ip(r, k+1) = ibeta(r, k+1, p)
- return probability;
- } // cdf Cumulative Distribution Function Negative Binomial.
- template <class RealType, class Policy>
- inline RealType cdf(const complemented2_type<negative_binomial_distribution<RealType, Policy>, RealType>& c)
- { // Complemented Cumulative Distribution Function Negative Binomial.
- static const char* function = "boost::math::cdf(const negative_binomial_distribution<%1%>&, %1%)";
- using boost::math::ibetac; // Regularized incomplete beta function complement.
- // k argument may be integral, signed, or unsigned, or floating point.
- // If necessary, it has already been promoted from an integral type.
- RealType const& k = c.param;
- negative_binomial_distribution<RealType, Policy> const& dist = c.dist;
- RealType p = dist.success_fraction();
- RealType r = dist.successes();
- // Error check:
- RealType result = 0;
- if(false == negative_binomial_detail::check_dist_and_k(
- function,
- r,
- p,
- k,
- &result, Policy()))
- {
- return result;
- }
- // Calculate cdf negative binomial using the incomplete beta function.
- // Use of ibeta here prevents cancellation errors in calculating
- // 1-p if p is very small, perhaps smaller than machine epsilon.
- // Ip(k+1, r) = ibetac(r, k+1, p)
- // constrain_probability here?
- RealType probability = ibetac(r, static_cast<RealType>(k+1), p, Policy());
- // Numerical errors might cause probability to be slightly outside the range < 0 or > 1.
- // This might cause trouble downstream, so warn, possibly throw exception, but constrain to the limits.
- return probability;
- } // cdf Cumulative Distribution Function Negative Binomial.
- template <class RealType, class Policy>
- inline RealType quantile(const negative_binomial_distribution<RealType, Policy>& dist, const RealType& P)
- { // Quantile, percentile/100 or Percent Point Negative Binomial function.
- // Return the number of expected failures k for a given probability p.
- // Inverse cumulative Distribution Function or Quantile (percentile / 100) of negative_binomial Probability.
- // MAthCAD pnbinom return smallest k such that negative_binomial(k, n, p) >= probability.
- // k argument may be integral, signed, or unsigned, or floating point.
- // BUT Cephes/CodeCogs says: finds argument p (0 to 1) such that cdf(k, n, p) = y
- static const char* function = "boost::math::quantile(const negative_binomial_distribution<%1%>&, %1%)";
- BOOST_MATH_STD_USING // ADL of std functions.
- RealType p = dist.success_fraction();
- RealType r = dist.successes();
- // Check dist and P.
- RealType result = 0;
- if(false == negative_binomial_detail::check_dist_and_prob
- (function, r, p, P, &result, Policy()))
- {
- return result;
- }
- // Special cases.
- if (P == 1)
- { // Would need +infinity failures for total confidence.
- result = policies::raise_overflow_error<RealType>(
- function,
- "Probability argument is 1, which implies infinite failures !", Policy());
- return result;
- // usually means return +std::numeric_limits<RealType>::infinity();
- // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
- }
- if (P == 0)
- { // No failures are expected if P = 0.
- return 0; // Total trials will be just dist.successes.
- }
- if (P <= pow(dist.success_fraction(), dist.successes()))
- { // p <= pdf(dist, 0) == cdf(dist, 0)
- return 0;
- }
- if(p == 0)
- { // Would need +infinity failures for total confidence.
- result = policies::raise_overflow_error<RealType>(
- function,
- "Success fraction is 0, which implies infinite failures !", Policy());
- return result;
- // usually means return +std::numeric_limits<RealType>::infinity();
- // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
- }
- /*
- // Calculate quantile of negative_binomial using the inverse incomplete beta function.
- using boost::math::ibeta_invb;
- return ibeta_invb(r, p, P, Policy()) - 1; //
- */
- RealType guess = 0;
- RealType factor = 5;
- if(r * r * r * P * p > 0.005)
- guess = detail::inverse_negative_binomial_cornish_fisher(r, p, RealType(1-p), P, RealType(1-P), Policy());
- if(guess < 10)
- {
- //
- // Cornish-Fisher Negative binomial approximation not accurate in this area:
- //
- guess = (std::min)(RealType(r * 2), RealType(10));
- }
- else
- factor = (1-P < sqrt(tools::epsilon<RealType>())) ? 2 : (guess < 20 ? 1.2f : 1.1f);
- BOOST_MATH_INSTRUMENT_CODE("guess = " << guess);
- //
- // Max iterations permitted:
- //
- std::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
- typedef typename Policy::discrete_quantile_type discrete_type;
- return detail::inverse_discrete_quantile(
- dist,
- P,
- false,
- guess,
- factor,
- RealType(1),
- discrete_type(),
- max_iter);
- } // RealType quantile(const negative_binomial_distribution dist, p)
- template <class RealType, class Policy>
- inline RealType quantile(const complemented2_type<negative_binomial_distribution<RealType, Policy>, RealType>& c)
- { // Quantile or Percent Point Binomial function.
- // Return the number of expected failures k for a given
- // complement of the probability Q = 1 - P.
- static const char* function = "boost::math::quantile(const negative_binomial_distribution<%1%>&, %1%)";
- BOOST_MATH_STD_USING
- // Error checks:
- RealType Q = c.param;
- const negative_binomial_distribution<RealType, Policy>& dist = c.dist;
- RealType p = dist.success_fraction();
- RealType r = dist.successes();
- RealType result = 0;
- if(false == negative_binomial_detail::check_dist_and_prob(
- function,
- r,
- p,
- Q,
- &result, Policy()))
- {
- return result;
- }
- // Special cases:
- //
- if(Q == 1)
- { // There may actually be no answer to this question,
- // since the probability of zero failures may be non-zero,
- return 0; // but zero is the best we can do:
- }
- if(Q == 0)
- { // Probability 1 - Q == 1 so infinite failures to achieve certainty.
- // Would need +infinity failures for total confidence.
- result = policies::raise_overflow_error<RealType>(
- function,
- "Probability argument complement is 0, which implies infinite failures !", Policy());
- return result;
- // usually means return +std::numeric_limits<RealType>::infinity();
- // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
- }
- if (-Q <= boost::math::powm1(dist.success_fraction(), dist.successes(), Policy()))
- { // q <= cdf(complement(dist, 0)) == pdf(dist, 0)
- return 0; //
- }
- if(p == 0)
- { // Success fraction is 0 so infinite failures to achieve certainty.
- // Would need +infinity failures for total confidence.
- result = policies::raise_overflow_error<RealType>(
- function,
- "Success fraction is 0, which implies infinite failures !", Policy());
- return result;
- // usually means return +std::numeric_limits<RealType>::infinity();
- // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
- }
- //return ibetac_invb(r, p, Q, Policy()) -1;
- RealType guess = 0;
- RealType factor = 5;
- if(r * r * r * (1-Q) * p > 0.005)
- guess = detail::inverse_negative_binomial_cornish_fisher(r, p, RealType(1-p), RealType(1-Q), Q, Policy());
- if(guess < 10)
- {
- //
- // Cornish-Fisher Negative binomial approximation not accurate in this area:
- //
- guess = (std::min)(RealType(r * 2), RealType(10));
- }
- else
- factor = (Q < sqrt(tools::epsilon<RealType>())) ? 2 : (guess < 20 ? 1.2f : 1.1f);
- BOOST_MATH_INSTRUMENT_CODE("guess = " << guess);
- //
- // Max iterations permitted:
- //
- std::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
- typedef typename Policy::discrete_quantile_type discrete_type;
- return detail::inverse_discrete_quantile(
- dist,
- Q,
- true,
- guess,
- factor,
- RealType(1),
- discrete_type(),
- max_iter);
- } // quantile complement
- } // namespace math
- } // namespace boost
- // This include must be at the end, *after* the accessors
- // for this distribution have been defined, in order to
- // keep compilers that support two-phase lookup happy.
- #include <boost/math/distributions/detail/derived_accessors.hpp>
- #if defined (BOOST_MSVC)
- # pragma warning(pop)
- #endif
- #endif // BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP
|