123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375 |
- // Copyright John Maddock 2006, 2007.
- // Copyright Paul A. Bristow 2007.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_STATS_CAUCHY_HPP
- #define BOOST_STATS_CAUCHY_HPP
- #ifdef _MSC_VER
- #pragma warning(push)
- #pragma warning(disable : 4127) // conditional expression is constant
- #endif
- #include <boost/math/distributions/fwd.hpp>
- #include <boost/math/constants/constants.hpp>
- #include <boost/math/distributions/complement.hpp>
- #include <boost/math/distributions/detail/common_error_handling.hpp>
- #include <utility>
- #include <cmath>
- namespace boost{ namespace math
- {
- template <class RealType, class Policy>
- class cauchy_distribution;
- namespace detail
- {
- template <class RealType, class Policy>
- RealType cdf_imp(const cauchy_distribution<RealType, Policy>& dist, const RealType& x, bool complement)
- {
- //
- // This calculates the cdf of the Cauchy distribution and/or its complement.
- //
- // The usual formula for the Cauchy cdf is:
- //
- // cdf = 0.5 + atan(x)/pi
- //
- // But that suffers from cancellation error as x -> -INF.
- //
- // Recall that for x < 0:
- //
- // atan(x) = -pi/2 - atan(1/x)
- //
- // Substituting into the above we get:
- //
- // CDF = -atan(1/x) ; x < 0
- //
- // So the procedure is to calculate the cdf for -fabs(x)
- // using the above formula, and then subtract from 1 when required
- // to get the result.
- //
- BOOST_MATH_STD_USING // for ADL of std functions
- static const char* function = "boost::math::cdf(cauchy<%1%>&, %1%)";
- RealType result = 0;
- RealType location = dist.location();
- RealType scale = dist.scale();
- if(false == detail::check_location(function, location, &result, Policy()))
- {
- return result;
- }
- if(false == detail::check_scale(function, scale, &result, Policy()))
- {
- return result;
- }
- if(std::numeric_limits<RealType>::has_infinity && x == std::numeric_limits<RealType>::infinity())
- { // cdf +infinity is unity.
- return static_cast<RealType>((complement) ? 0 : 1);
- }
- if(std::numeric_limits<RealType>::has_infinity && x == -std::numeric_limits<RealType>::infinity())
- { // cdf -infinity is zero.
- return static_cast<RealType>((complement) ? 1 : 0);
- }
- if(false == detail::check_x(function, x, &result, Policy()))
- { // Catches x == NaN
- return result;
- }
- RealType mx = -fabs((x - location) / scale); // scale is > 0
- if(mx > -tools::epsilon<RealType>() / 8)
- { // special case first: x extremely close to location.
- return static_cast<RealType>(0.5f);
- }
- result = -atan(1 / mx) / constants::pi<RealType>();
- return (((x > location) != complement) ? 1 - result : result);
- } // cdf
- template <class RealType, class Policy>
- RealType quantile_imp(
- const cauchy_distribution<RealType, Policy>& dist,
- const RealType& p,
- bool complement)
- {
- // This routine implements the quantile for the Cauchy distribution,
- // the value p may be the probability, or its complement if complement=true.
- //
- // The procedure first performs argument reduction on p to avoid error
- // when calculating the tangent, then calculates the distance from the
- // mid-point of the distribution. This is either added or subtracted
- // from the location parameter depending on whether `complement` is true.
- //
- static const char* function = "boost::math::quantile(cauchy<%1%>&, %1%)";
- BOOST_MATH_STD_USING // for ADL of std functions
- RealType result = 0;
- RealType location = dist.location();
- RealType scale = dist.scale();
- if(false == detail::check_location(function, location, &result, Policy()))
- {
- return result;
- }
- if(false == detail::check_scale(function, scale, &result, Policy()))
- {
- return result;
- }
- if(false == detail::check_probability(function, p, &result, Policy()))
- {
- return result;
- }
- // Special cases:
- if(p == 1)
- {
- return (complement ? -1 : 1) * policies::raise_overflow_error<RealType>(function, 0, Policy());
- }
- if(p == 0)
- {
- return (complement ? 1 : -1) * policies::raise_overflow_error<RealType>(function, 0, Policy());
- }
- RealType P = p - floor(p); // argument reduction of p:
- if(P > 0.5)
- {
- P = P - 1;
- }
- if(P == 0.5) // special case:
- {
- return location;
- }
- result = -scale / tan(constants::pi<RealType>() * P);
- return complement ? RealType(location - result) : RealType(location + result);
- } // quantile
- } // namespace detail
- template <class RealType = double, class Policy = policies::policy<> >
- class cauchy_distribution
- {
- public:
- typedef RealType value_type;
- typedef Policy policy_type;
- cauchy_distribution(RealType l_location = 0, RealType l_scale = 1)
- : m_a(l_location), m_hg(l_scale)
- {
- static const char* function = "boost::math::cauchy_distribution<%1%>::cauchy_distribution";
- RealType result;
- detail::check_location(function, l_location, &result, Policy());
- detail::check_scale(function, l_scale, &result, Policy());
- } // cauchy_distribution
- RealType location()const
- {
- return m_a;
- }
- RealType scale()const
- {
- return m_hg;
- }
- private:
- RealType m_a; // The location, this is the median of the distribution.
- RealType m_hg; // The scale )or shape), this is the half width at half height.
- };
- typedef cauchy_distribution<double> cauchy;
- #ifdef __cpp_deduction_guides
- template <class RealType>
- cauchy_distribution(RealType)->cauchy_distribution<typename boost::math::tools::promote_args<RealType>::type>;
- template <class RealType>
- cauchy_distribution(RealType,RealType)->cauchy_distribution<typename boost::math::tools::promote_args<RealType>::type>;
- #endif
- template <class RealType, class Policy>
- inline const std::pair<RealType, RealType> range(const cauchy_distribution<RealType, Policy>&)
- { // Range of permissible values for random variable x.
- if (std::numeric_limits<RealType>::has_infinity)
- {
- return std::pair<RealType, RealType>(-std::numeric_limits<RealType>::infinity(), std::numeric_limits<RealType>::infinity()); // - to + infinity.
- }
- else
- { // Can only use max_value.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + max.
- }
- }
- template <class RealType, class Policy>
- inline const std::pair<RealType, RealType> support(const cauchy_distribution<RealType, Policy>& )
- { // Range of supported values for random variable x.
- // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
- if (std::numeric_limits<RealType>::has_infinity)
- {
- return std::pair<RealType, RealType>(-std::numeric_limits<RealType>::infinity(), std::numeric_limits<RealType>::infinity()); // - to + infinity.
- }
- else
- { // Can only use max_value.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(-tools::max_value<RealType>(), max_value<RealType>()); // - to + max.
- }
- }
- template <class RealType, class Policy>
- inline RealType pdf(const cauchy_distribution<RealType, Policy>& dist, const RealType& x)
- {
- BOOST_MATH_STD_USING // for ADL of std functions
- static const char* function = "boost::math::pdf(cauchy<%1%>&, %1%)";
- RealType result = 0;
- RealType location = dist.location();
- RealType scale = dist.scale();
- if(false == detail::check_scale("boost::math::pdf(cauchy<%1%>&, %1%)", scale, &result, Policy()))
- {
- return result;
- }
- if(false == detail::check_location("boost::math::pdf(cauchy<%1%>&, %1%)", location, &result, Policy()))
- {
- return result;
- }
- if((boost::math::isinf)(x))
- {
- return 0; // pdf + and - infinity is zero.
- }
- // These produce MSVC 4127 warnings, so the above used instead.
- //if(std::numeric_limits<RealType>::has_infinity && abs(x) == std::numeric_limits<RealType>::infinity())
- //{ // pdf + and - infinity is zero.
- // return 0;
- //}
- if(false == detail::check_x(function, x, &result, Policy()))
- { // Catches x = NaN
- return result;
- }
- RealType xs = (x - location) / scale;
- result = 1 / (constants::pi<RealType>() * scale * (1 + xs * xs));
- return result;
- } // pdf
- template <class RealType, class Policy>
- inline RealType cdf(const cauchy_distribution<RealType, Policy>& dist, const RealType& x)
- {
- return detail::cdf_imp(dist, x, false);
- } // cdf
- template <class RealType, class Policy>
- inline RealType quantile(const cauchy_distribution<RealType, Policy>& dist, const RealType& p)
- {
- return detail::quantile_imp(dist, p, false);
- } // quantile
- template <class RealType, class Policy>
- inline RealType cdf(const complemented2_type<cauchy_distribution<RealType, Policy>, RealType>& c)
- {
- return detail::cdf_imp(c.dist, c.param, true);
- } // cdf complement
- template <class RealType, class Policy>
- inline RealType quantile(const complemented2_type<cauchy_distribution<RealType, Policy>, RealType>& c)
- {
- return detail::quantile_imp(c.dist, c.param, true);
- } // quantile complement
- template <class RealType, class Policy>
- inline RealType mean(const cauchy_distribution<RealType, Policy>&)
- { // There is no mean:
- typedef typename Policy::assert_undefined_type assert_type;
- static_assert(assert_type::value == 0, "assert type is undefined");
- return policies::raise_domain_error<RealType>(
- "boost::math::mean(cauchy<%1%>&)",
- "The Cauchy distribution does not have a mean: "
- "the only possible return value is %1%.",
- std::numeric_limits<RealType>::quiet_NaN(), Policy());
- }
- template <class RealType, class Policy>
- inline RealType variance(const cauchy_distribution<RealType, Policy>& /*dist*/)
- {
- // There is no variance:
- typedef typename Policy::assert_undefined_type assert_type;
- static_assert(assert_type::value == 0, "assert type is undefined");
- return policies::raise_domain_error<RealType>(
- "boost::math::variance(cauchy<%1%>&)",
- "The Cauchy distribution does not have a variance: "
- "the only possible return value is %1%.",
- std::numeric_limits<RealType>::quiet_NaN(), Policy());
- }
- template <class RealType, class Policy>
- inline RealType mode(const cauchy_distribution<RealType, Policy>& dist)
- {
- return dist.location();
- }
- template <class RealType, class Policy>
- inline RealType median(const cauchy_distribution<RealType, Policy>& dist)
- {
- return dist.location();
- }
- template <class RealType, class Policy>
- inline RealType skewness(const cauchy_distribution<RealType, Policy>& /*dist*/)
- {
- // There is no skewness:
- typedef typename Policy::assert_undefined_type assert_type;
- static_assert(assert_type::value == 0, "assert type is undefined");
- return policies::raise_domain_error<RealType>(
- "boost::math::skewness(cauchy<%1%>&)",
- "The Cauchy distribution does not have a skewness: "
- "the only possible return value is %1%.",
- std::numeric_limits<RealType>::quiet_NaN(), Policy()); // infinity?
- }
- template <class RealType, class Policy>
- inline RealType kurtosis(const cauchy_distribution<RealType, Policy>& /*dist*/)
- {
- // There is no kurtosis:
- typedef typename Policy::assert_undefined_type assert_type;
- static_assert(assert_type::value == 0, "assert type is undefined");
- return policies::raise_domain_error<RealType>(
- "boost::math::kurtosis(cauchy<%1%>&)",
- "The Cauchy distribution does not have a kurtosis: "
- "the only possible return value is %1%.",
- std::numeric_limits<RealType>::quiet_NaN(), Policy());
- }
- template <class RealType, class Policy>
- inline RealType kurtosis_excess(const cauchy_distribution<RealType, Policy>& /*dist*/)
- {
- // There is no kurtosis excess:
- typedef typename Policy::assert_undefined_type assert_type;
- static_assert(assert_type::value == 0, "assert type is undefined");
- return policies::raise_domain_error<RealType>(
- "boost::math::kurtosis_excess(cauchy<%1%>&)",
- "The Cauchy distribution does not have a kurtosis: "
- "the only possible return value is %1%.",
- std::numeric_limits<RealType>::quiet_NaN(), Policy());
- }
- template <class RealType, class Policy>
- inline RealType entropy(const cauchy_distribution<RealType, Policy> & dist)
- {
- using std::log;
- return log(2*constants::two_pi<RealType>()*dist.scale());
- }
- } // namespace math
- } // namespace boost
- #ifdef _MSC_VER
- #pragma warning(pop)
- #endif
- // This include must be at the end, *after* the accessors
- // for this distribution have been defined, in order to
- // keep compilers that support two-phase lookup happy.
- #include <boost/math/distributions/detail/derived_accessors.hpp>
- #endif // BOOST_STATS_CAUCHY_HPP
|