123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458 |
- // (C) Copyright John Maddock 2008 - 2022.
- // (C) Copyright Matt Borland 2022.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_CCMATH_NEXT_HPP
- #define BOOST_MATH_CCMATH_NEXT_HPP
- #include <boost/math/ccmath/detail/config.hpp>
- #ifdef BOOST_MATH_NO_CCMATH
- #error "The header <boost/math/next.hpp> can only be used in C++17 and later."
- #endif
- #include <stdexcept>
- #include <cfloat>
- #include <cstdint>
- #include <boost/math/policies/policy.hpp>
- #include <boost/math/policies/error_handling.hpp>
- #include <boost/math/tools/assert.hpp>
- #include <boost/math/tools/config.hpp>
- #include <boost/math/tools/precision.hpp>
- #include <boost/math/tools/traits.hpp>
- #include <boost/math/tools/promotion.hpp>
- #include <boost/math/ccmath/ilogb.hpp>
- #include <boost/math/ccmath/ldexp.hpp>
- #include <boost/math/ccmath/scalbln.hpp>
- #include <boost/math/ccmath/round.hpp>
- #include <boost/math/ccmath/fabs.hpp>
- #include <boost/math/ccmath/fpclassify.hpp>
- #include <boost/math/ccmath/isfinite.hpp>
- #include <boost/math/ccmath/fmod.hpp>
- namespace boost::math::ccmath {
- namespace detail {
- // Forward Declarations
- template <typename T, typename result_type = tools::promote_args_t<T>>
- constexpr result_type float_prior(const T& val);
- template <typename T, typename result_type = tools::promote_args_t<T>>
- constexpr result_type float_next(const T& val);
- template <typename T>
- struct has_hidden_guard_digits;
- template <>
- struct has_hidden_guard_digits<float> : public std::false_type {};
- template <>
- struct has_hidden_guard_digits<double> : public std::false_type {};
- template <>
- struct has_hidden_guard_digits<long double> : public std::false_type {};
- #ifdef BOOST_HAS_FLOAT128
- template <>
- struct has_hidden_guard_digits<__float128> : public std::false_type {};
- #endif
- template <typename T, bool b>
- struct has_hidden_guard_digits_10 : public std::false_type {};
- template <typename T>
- struct has_hidden_guard_digits_10<T, true> : public std::integral_constant<bool, (std::numeric_limits<T>::digits10 != std::numeric_limits<T>::max_digits10)> {};
- template <typename T>
- struct has_hidden_guard_digits
- : public has_hidden_guard_digits_10<T,
- std::numeric_limits<T>::is_specialized
- && (std::numeric_limits<T>::radix == 10) >
- {};
- template <typename T>
- constexpr T normalize_value(const T& val, const std::false_type&) { return val; }
- template <typename T>
- constexpr T normalize_value(const T& val, const std::true_type&)
- {
- static_assert(std::numeric_limits<T>::is_specialized, "Type T must be specialized.");
- static_assert(std::numeric_limits<T>::radix != 2, "Type T must be specialized.");
- std::intmax_t shift = static_cast<std::intmax_t>(std::numeric_limits<T>::digits) - static_cast<std::intmax_t>(boost::math::ccmath::ilogb(val)) - 1;
- T result = boost::math::ccmath::scalbn(val, shift);
- result = boost::math::ccmath::round(result);
- return boost::math::ccmath::scalbn(result, -shift);
- }
- template <typename T>
- constexpr T get_smallest_value(const std::true_type&)
- {
- //
- // numeric_limits lies about denorms being present - particularly
- // when this can be turned on or off at runtime, as is the case
- // when using the SSE2 registers in DAZ or FTZ mode.
- //
- constexpr T m = std::numeric_limits<T>::denorm_min();
- return ((tools::min_value<T>() / 2) == 0) ? tools::min_value<T>() : m;
- }
- template <typename T>
- constexpr T get_smallest_value(const std::false_type&)
- {
- return tools::min_value<T>();
- }
- template <typename T>
- constexpr T get_smallest_value()
- {
- return get_smallest_value<T>(std::integral_constant<bool, std::numeric_limits<T>::is_specialized>());
- }
- template <typename T>
- constexpr T calc_min_shifted(const std::true_type&)
- {
- return boost::math::ccmath::ldexp(tools::min_value<T>(), tools::digits<T>() + 1);
- }
- template <typename T>
- constexpr T calc_min_shifted(const std::false_type&)
- {
- static_assert(std::numeric_limits<T>::is_specialized, "Type T must be specialized.");
- static_assert(std::numeric_limits<T>::radix != 2, "Type T must be specialized.");
- return boost::math::ccmath::scalbn(tools::min_value<T>(), std::numeric_limits<T>::digits + 1);
- }
- template <typename T>
- constexpr T get_min_shift_value()
- {
- const T val = calc_min_shifted<T>(std::integral_constant<bool, !std::numeric_limits<T>::is_specialized || std::numeric_limits<T>::radix == 2>());
- return val;
- }
- template <typename T, bool b = boost::math::tools::detail::has_backend_type_v<T>>
- struct exponent_type
- {
- using type = int;
- };
- template <typename T>
- struct exponent_type<T, true>
- {
- using type = typename T::backend_type::exponent_type;
- };
- template <typename T, bool b = boost::math::tools::detail::has_backend_type_v<T>>
- using exponent_type_t = typename exponent_type<T>::type;
- template <typename T>
- constexpr T float_next_imp(const T& val, const std::true_type&)
- {
- using exponent_type = exponent_type_t<T>;
-
- exponent_type expon {};
- int fpclass = boost::math::ccmath::fpclassify(val);
- if (fpclass == FP_NAN)
- {
- return val;
- }
- else if (fpclass == FP_INFINITE)
- {
- return val;
- }
- else if (val <= -tools::max_value<T>())
- {
- return val;
- }
- if (val == 0)
- {
- return detail::get_smallest_value<T>();
- }
- if ((fpclass != FP_SUBNORMAL) && (fpclass != FP_ZERO)
- && (boost::math::ccmath::fabs(val) < detail::get_min_shift_value<T>())
- && (val != -tools::min_value<T>()))
- {
- //
- // Special case: if the value of the least significant bit is a denorm, and the result
- // would not be a denorm, then shift the input, increment, and shift back.
- // This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set.
- //
- return boost::math::ccmath::ldexp(boost::math::ccmath::detail::float_next(static_cast<T>(boost::math::ccmath::ldexp(val, 2 * tools::digits<T>()))), -2 * tools::digits<T>());
- }
- if (-0.5f == boost::math::ccmath::frexp(val, &expon))
- {
- --expon; // reduce exponent when val is a power of two, and negative.
- }
- T diff = boost::math::ccmath::ldexp(static_cast<T>(1), expon - tools::digits<T>());
- if(diff == 0)
- {
- diff = detail::get_smallest_value<T>();
- }
- return val + diff;
- }
- //
- // Special version for some base other than 2:
- //
- template <typename T>
- constexpr T float_next_imp(const T& val, const std::false_type&)
- {
- using exponent_type = exponent_type_t<T>;
- static_assert(std::numeric_limits<T>::is_specialized, "Type T must be specialized.");
- static_assert(std::numeric_limits<T>::radix != 2, "Type T must be specialized.");
- exponent_type expon {};
- int fpclass = boost::math::ccmath::fpclassify(val);
- if (fpclass == FP_NAN)
- {
- return val;
- }
- else if (fpclass == FP_INFINITE)
- {
- return val;
- }
- else if (val <= -tools::max_value<T>())
- {
- return val;
- }
- if (val == 0)
- {
- return detail::get_smallest_value<T>();
- }
- if ((fpclass != FP_SUBNORMAL) && (fpclass != FP_ZERO)
- && (boost::math::ccmath::fabs(val) < detail::get_min_shift_value<T>())
- && (val != -tools::min_value<T>()))
- {
- //
- // Special case: if the value of the least significant bit is a denorm, and the result
- // would not be a denorm, then shift the input, increment, and shift back.
- // This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set.
- //
- return boost::math::ccmath::scalbn(boost::math::ccmath::detail::float_next(static_cast<T>(boost::math::ccmath::scalbn(val, 2 * std::numeric_limits<T>::digits))), -2 * std::numeric_limits<T>::digits);
- }
- expon = 1 + boost::math::ccmath::ilogb(val);
- if(-1 == boost::math::ccmath::scalbn(val, -expon) * std::numeric_limits<T>::radix)
- {
- --expon; // reduce exponent when val is a power of base, and negative.
- }
- T diff = boost::math::ccmath::scalbn(static_cast<T>(1), expon - std::numeric_limits<T>::digits);
- if(diff == 0)
- {
- diff = detail::get_smallest_value<T>();
- }
- return val + diff;
- }
- template <typename T, typename result_type>
- constexpr result_type float_next(const T& val)
- {
- return detail::float_next_imp(detail::normalize_value(static_cast<result_type>(val), typename detail::has_hidden_guard_digits<result_type>::type()), std::integral_constant<bool, !std::numeric_limits<result_type>::is_specialized || (std::numeric_limits<result_type>::radix == 2)>());
- }
- template <typename T>
- constexpr T float_prior_imp(const T& val, const std::true_type&)
- {
- using exponent_type = exponent_type_t<T>;
- exponent_type expon {};
- int fpclass = boost::math::ccmath::fpclassify(val);
- if (fpclass == FP_NAN)
- {
- return val;
- }
- else if (fpclass == FP_INFINITE)
- {
- return val;
- }
- else if (val <= -tools::max_value<T>())
- {
- return val;
- }
- if (val == 0)
- {
- return -detail::get_smallest_value<T>();
- }
- if ((fpclass != FP_SUBNORMAL) && (fpclass != FP_ZERO)
- && (boost::math::ccmath::fabs(val) < detail::get_min_shift_value<T>())
- && (val != tools::min_value<T>()))
- {
- //
- // Special case: if the value of the least significant bit is a denorm, and the result
- // would not be a denorm, then shift the input, increment, and shift back.
- // This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set.
- //
- return boost::math::ccmath::ldexp(boost::math::ccmath::detail::float_prior(static_cast<T>(boost::math::ccmath::ldexp(val, 2 * tools::digits<T>()))), -2 * tools::digits<T>());
- }
- if(T remain = boost::math::ccmath::frexp(val, &expon); remain == 0.5f)
- {
- --expon; // when val is a power of two we must reduce the exponent
- }
- T diff = boost::math::ccmath::ldexp(static_cast<T>(1), expon - tools::digits<T>());
- if(diff == 0)
- {
- diff = detail::get_smallest_value<T>();
- }
- return val - diff;
- }
- //
- // Special version for bases other than 2:
- //
- template <typename T>
- constexpr T float_prior_imp(const T& val, const std::false_type&)
- {
- using exponent_type = exponent_type_t<T>;
- static_assert(std::numeric_limits<T>::is_specialized, "Type T must be specialized.");
- static_assert(std::numeric_limits<T>::radix != 2, "Type T must be specialized.");
- exponent_type expon {};
- int fpclass = boost::math::ccmath::fpclassify(val);
- if (fpclass == FP_NAN)
- {
- return val;
- }
- else if (fpclass == FP_INFINITE)
- {
- return val;
- }
- else if (val <= -tools::max_value<T>())
- {
- return val;
- }
- if (val == 0)
- {
- return -detail::get_smallest_value<T>();
- }
- if ((fpclass != FP_SUBNORMAL) && (fpclass != FP_ZERO)
- && (boost::math::ccmath::fabs(val) < detail::get_min_shift_value<T>())
- && (val != tools::min_value<T>()))
- {
- //
- // Special case: if the value of the least significant bit is a denorm, and the result
- // would not be a denorm, then shift the input, increment, and shift back.
- // This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set.
- //
- return boost::math::ccmath::scalbn(boost::math::ccmath::detail::float_prior(static_cast<T>(boost::math::ccmath::scalbn(val, 2 * std::numeric_limits<T>::digits))), -2 * std::numeric_limits<T>::digits);
- }
- expon = 1 + boost::math::ccmath::ilogb(val);
-
- if (T remain = boost::math::ccmath::scalbn(val, -expon); remain * std::numeric_limits<T>::radix == 1)
- {
- --expon; // when val is a power of two we must reduce the exponent
- }
- T diff = boost::math::ccmath::scalbn(static_cast<T>(1), expon - std::numeric_limits<T>::digits);
- if (diff == 0)
- {
- diff = detail::get_smallest_value<T>();
- }
- return val - diff;
- } // float_prior_imp
- template <typename T, typename result_type>
- constexpr result_type float_prior(const T& val)
- {
- return detail::float_prior_imp(detail::normalize_value(static_cast<result_type>(val), typename detail::has_hidden_guard_digits<result_type>::type()), std::integral_constant<bool, !std::numeric_limits<result_type>::is_specialized || (std::numeric_limits<result_type>::radix == 2)>());
- }
- } // namespace detail
- template <typename T, typename U, typename result_type = tools::promote_args_t<T, U>>
- constexpr result_type nextafter(const T& val, const U& direction)
- {
- if (BOOST_MATH_IS_CONSTANT_EVALUATED(val))
- {
- if (boost::math::ccmath::isnan(val))
- {
- return val;
- }
- else if (boost::math::ccmath::isnan(direction))
- {
- return direction;
- }
- else if (val < direction)
- {
- return boost::math::ccmath::detail::float_next(val);
- }
- else if (val == direction)
- {
- // IEC 60559 recommends that from is returned whenever from == to. These functions return to instead,
- // which makes the behavior around zero consistent: std::nextafter(-0.0, +0.0) returns +0.0 and
- // std::nextafter(+0.0, -0.0) returns -0.0.
- return direction;
- }
- return boost::math::ccmath::detail::float_prior(val);
- }
- else
- {
- using std::nextafter;
- return nextafter(static_cast<result_type>(val), static_cast<result_type>(direction));
- }
- }
- constexpr float nextafterf(float val, float direction)
- {
- return boost::math::ccmath::nextafter(val, direction);
- }
- #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
- constexpr long double nextafterl(long double val, long double direction)
- {
- return boost::math::ccmath::nextafter(val, direction);
- }
- template <typename T, typename result_type = tools::promote_args_t<T, long double>, typename return_type = std::conditional_t<std::is_integral_v<T>, double, T>>
- constexpr return_type nexttoward(T val, long double direction)
- {
- if (BOOST_MATH_IS_CONSTANT_EVALUATED(val))
- {
- return static_cast<return_type>(boost::math::ccmath::nextafter(static_cast<result_type>(val), direction));
- }
- else
- {
- using std::nexttoward;
- return nexttoward(val, direction);
- }
- }
- constexpr float nexttowardf(float val, long double direction)
- {
- return boost::math::ccmath::nexttoward(val, direction);
- }
- constexpr long double nexttowardl(long double val, long double direction)
- {
- return boost::math::ccmath::nexttoward(val, direction);
- }
- #endif
- } // Namespaces
- #endif // BOOST_MATH_SPECIAL_NEXT_HPP
|