123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974 |
- // Copyright John Maddock 2008.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- //
- // Wrapper that works with mpfr_class defined in gmpfrxx.h
- // See http://math.berkeley.edu/~wilken/code/gmpfrxx/
- // Also requires the gmp and mpfr libraries.
- //
- #ifndef BOOST_MATH_MPLFR_BINDINGS_HPP
- #define BOOST_MATH_MPLFR_BINDINGS_HPP
- #include <type_traits>
- #ifdef _MSC_VER
- //
- // We get a lot of warnings from the gmp, mpfr and gmpfrxx headers,
- // disable them here, so we only see warnings from *our* code:
- //
- #pragma warning(push)
- #pragma warning(disable: 4127 4800 4512)
- #endif
- #include <gmpfrxx.h>
- #ifdef _MSC_VER
- #pragma warning(pop)
- #endif
- #include <boost/math/tools/precision.hpp>
- #include <boost/math/tools/real_cast.hpp>
- #include <boost/math/policies/policy.hpp>
- #include <boost/math/distributions/fwd.hpp>
- #include <boost/math/special_functions/math_fwd.hpp>
- #include <boost/math/bindings/detail/big_digamma.hpp>
- #include <boost/math/bindings/detail/big_lanczos.hpp>
- #include <boost/math/tools/big_constant.hpp>
- #include <boost/math/tools/config.hpp>
- inline mpfr_class fabs(const mpfr_class& v)
- {
- return abs(v);
- }
- template <class T, class U>
- inline mpfr_class fabs(const __gmp_expr<T,U>& v)
- {
- return abs(static_cast<mpfr_class>(v));
- }
- inline mpfr_class pow(const mpfr_class& b, const mpfr_class& e)
- {
- mpfr_class result;
- mpfr_pow(result.__get_mp(), b.__get_mp(), e.__get_mp(), GMP_RNDN);
- return result;
- }
- /*
- template <class T, class U, class V, class W>
- inline mpfr_class pow(const __gmp_expr<T,U>& b, const __gmp_expr<V,W>& e)
- {
- return pow(static_cast<mpfr_class>(b), static_cast<mpfr_class>(e));
- }
- */
- inline mpfr_class ldexp(const mpfr_class& v, int e)
- {
- //int e = mpfr_get_exp(*v.__get_mp());
- mpfr_class result(v);
- mpfr_set_exp(result.__get_mp(), e);
- return result;
- }
- template <class T, class U>
- inline mpfr_class ldexp(const __gmp_expr<T,U>& v, int e)
- {
- return ldexp(static_cast<mpfr_class>(v), e);
- }
- inline mpfr_class frexp(const mpfr_class& v, int* expon)
- {
- int e = mpfr_get_exp(v.__get_mp());
- mpfr_class result(v);
- mpfr_set_exp(result.__get_mp(), 0);
- *expon = e;
- return result;
- }
- template <class T, class U>
- inline mpfr_class frexp(const __gmp_expr<T,U>& v, int* expon)
- {
- return frexp(static_cast<mpfr_class>(v), expon);
- }
- inline mpfr_class fmod(const mpfr_class& v1, const mpfr_class& v2)
- {
- mpfr_class n;
- if(v1 < 0)
- n = ceil(v1 / v2);
- else
- n = floor(v1 / v2);
- return v1 - n * v2;
- }
- template <class T, class U, class V, class W>
- inline mpfr_class fmod(const __gmp_expr<T,U>& v1, const __gmp_expr<V,W>& v2)
- {
- return fmod(static_cast<mpfr_class>(v1), static_cast<mpfr_class>(v2));
- }
- template <class Policy>
- inline mpfr_class modf(const mpfr_class& v, long long* ipart, const Policy& pol)
- {
- *ipart = lltrunc(v, pol);
- return v - boost::math::tools::real_cast<mpfr_class>(*ipart);
- }
- template <class T, class U, class Policy>
- inline mpfr_class modf(const __gmp_expr<T,U>& v, long long* ipart, const Policy& pol)
- {
- return modf(static_cast<mpfr_class>(v), ipart, pol);
- }
- template <class Policy>
- inline int iround(mpfr_class const& x, const Policy&)
- {
- return boost::math::tools::real_cast<int>(boost::math::round(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
- }
- template <class T, class U, class Policy>
- inline int iround(__gmp_expr<T,U> const& x, const Policy& pol)
- {
- return iround(static_cast<mpfr_class>(x), pol);
- }
- template <class Policy>
- inline long lround(mpfr_class const& x, const Policy&)
- {
- return boost::math::tools::real_cast<long>(boost::math::round(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
- }
- template <class T, class U, class Policy>
- inline long lround(__gmp_expr<T,U> const& x, const Policy& pol)
- {
- return lround(static_cast<mpfr_class>(x), pol);
- }
- template <class Policy>
- inline long long llround(mpfr_class const& x, const Policy&)
- {
- return boost::math::tools::real_cast<long long>(boost::math::round(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
- }
- template <class T, class U, class Policy>
- inline long long llround(__gmp_expr<T,U> const& x, const Policy& pol)
- {
- return llround(static_cast<mpfr_class>(x), pol);
- }
- template <class Policy>
- inline int itrunc(mpfr_class const& x, const Policy&)
- {
- return boost::math::tools::real_cast<int>(boost::math::trunc(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
- }
- template <class T, class U, class Policy>
- inline int itrunc(__gmp_expr<T,U> const& x, const Policy& pol)
- {
- return itrunc(static_cast<mpfr_class>(x), pol);
- }
- template <class Policy>
- inline long ltrunc(mpfr_class const& x, const Policy&)
- {
- return boost::math::tools::real_cast<long>(boost::math::trunc(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
- }
- template <class T, class U, class Policy>
- inline long ltrunc(__gmp_expr<T,U> const& x, const Policy& pol)
- {
- return ltrunc(static_cast<mpfr_class>(x), pol);
- }
- template <class Policy>
- inline long long lltrunc(mpfr_class const& x, const Policy&)
- {
- return boost::math::tools::real_cast<long long>(boost::math::trunc(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
- }
- template <class T, class U, class Policy>
- inline long long lltrunc(__gmp_expr<T,U> const& x, const Policy& pol)
- {
- return lltrunc(static_cast<mpfr_class>(x), pol);
- }
- namespace boost{
- #ifdef BOOST_MATH_USE_FLOAT128
- template<> struct std::is_convertible<BOOST_MATH_FLOAT128_TYPE, mpfr_class> : public std::integral_constant<bool, false>{};
- #endif
- template<> struct std::is_convertible<long long, mpfr_class> : public std::integral_constant<bool, false>{};
- namespace math{
- #if defined(__GNUC__) && (__GNUC__ < 4)
- using ::iround;
- using ::lround;
- using ::llround;
- using ::itrunc;
- using ::ltrunc;
- using ::lltrunc;
- using ::modf;
- #endif
- namespace lanczos{
- struct mpfr_lanczos
- {
- static mpfr_class lanczos_sum(const mpfr_class& z)
- {
- unsigned long p = z.get_dprec();
- if(p <= 72)
- return lanczos13UDT::lanczos_sum(z);
- else if(p <= 120)
- return lanczos22UDT::lanczos_sum(z);
- else if(p <= 170)
- return lanczos31UDT::lanczos_sum(z);
- else //if(p <= 370) approx 100 digit precision:
- return lanczos61UDT::lanczos_sum(z);
- }
- static mpfr_class lanczos_sum_expG_scaled(const mpfr_class& z)
- {
- unsigned long p = z.get_dprec();
- if(p <= 72)
- return lanczos13UDT::lanczos_sum_expG_scaled(z);
- else if(p <= 120)
- return lanczos22UDT::lanczos_sum_expG_scaled(z);
- else if(p <= 170)
- return lanczos31UDT::lanczos_sum_expG_scaled(z);
- else //if(p <= 370) approx 100 digit precision:
- return lanczos61UDT::lanczos_sum_expG_scaled(z);
- }
- static mpfr_class lanczos_sum_near_1(const mpfr_class& z)
- {
- unsigned long p = z.get_dprec();
- if(p <= 72)
- return lanczos13UDT::lanczos_sum_near_1(z);
- else if(p <= 120)
- return lanczos22UDT::lanczos_sum_near_1(z);
- else if(p <= 170)
- return lanczos31UDT::lanczos_sum_near_1(z);
- else //if(p <= 370) approx 100 digit precision:
- return lanczos61UDT::lanczos_sum_near_1(z);
- }
- static mpfr_class lanczos_sum_near_2(const mpfr_class& z)
- {
- unsigned long p = z.get_dprec();
- if(p <= 72)
- return lanczos13UDT::lanczos_sum_near_2(z);
- else if(p <= 120)
- return lanczos22UDT::lanczos_sum_near_2(z);
- else if(p <= 170)
- return lanczos31UDT::lanczos_sum_near_2(z);
- else //if(p <= 370) approx 100 digit precision:
- return lanczos61UDT::lanczos_sum_near_2(z);
- }
- static mpfr_class g()
- {
- unsigned long p = mpfr_class::get_dprec();
- if(p <= 72)
- return lanczos13UDT::g();
- else if(p <= 120)
- return lanczos22UDT::g();
- else if(p <= 170)
- return lanczos31UDT::g();
- else //if(p <= 370) approx 100 digit precision:
- return lanczos61UDT::g();
- }
- };
- template<class Policy>
- struct lanczos<mpfr_class, Policy>
- {
- typedef mpfr_lanczos type;
- };
- } // namespace lanczos
- namespace constants{
- template <class Real, class Policy>
- struct construction_traits;
- template <class Policy>
- struct construction_traits<mpfr_class, Policy>
- {
- typedef std::integral_constant<int, 0> type;
- };
- }
- namespace tools
- {
- template <class T, class U>
- struct promote_arg<__gmp_expr<T,U> >
- { // If T is integral type, then promote to double.
- typedef mpfr_class type;
- };
- template<>
- inline int digits<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class)) noexcept
- {
- return mpfr_class::get_dprec();
- }
- namespace detail{
- template<class Integer>
- void convert_to_long_result(mpfr_class const& r, Integer& result)
- {
- result = 0;
- I last_result(0);
- mpfr_class t(r);
- double term;
- do
- {
- term = real_cast<double>(t);
- last_result = result;
- result += static_cast<I>(term);
- t -= term;
- }while(result != last_result);
- }
- }
- template <>
- inline mpfr_class real_cast<mpfr_class, long long>(long long t)
- {
- mpfr_class result;
- int expon = 0;
- int sign = 1;
- if(t < 0)
- {
- sign = -1;
- t = -t;
- }
- while(t)
- {
- result += ldexp(static_cast<double>(t & 0xffffL), expon);
- expon += 32;
- t >>= 32;
- }
- return result * sign;
- }
- template <>
- inline unsigned real_cast<unsigned, mpfr_class>(mpfr_class t)
- {
- return t.get_ui();
- }
- template <>
- inline int real_cast<int, mpfr_class>(mpfr_class t)
- {
- return t.get_si();
- }
- template <>
- inline double real_cast<double, mpfr_class>(mpfr_class t)
- {
- return t.get_d();
- }
- template <>
- inline float real_cast<float, mpfr_class>(mpfr_class t)
- {
- return static_cast<float>(t.get_d());
- }
- template <>
- inline long real_cast<long, mpfr_class>(mpfr_class t)
- {
- long result;
- detail::convert_to_long_result(t, result);
- return result;
- }
- template <>
- inline long long real_cast<long long, mpfr_class>(mpfr_class t)
- {
- long long result;
- detail::convert_to_long_result(t, result);
- return result;
- }
- template <>
- inline mpfr_class max_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
- {
- static bool has_init = false;
- static mpfr_class val;
- if(!has_init)
- {
- val = 0.5;
- mpfr_set_exp(val.__get_mp(), mpfr_get_emax());
- has_init = true;
- }
- return val;
- }
- template <>
- inline mpfr_class min_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
- {
- static bool has_init = false;
- static mpfr_class val;
- if(!has_init)
- {
- val = 0.5;
- mpfr_set_exp(val.__get_mp(), mpfr_get_emin());
- has_init = true;
- }
- return val;
- }
- template <>
- inline mpfr_class log_max_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
- {
- static bool has_init = false;
- static mpfr_class val = max_value<mpfr_class>();
- if(!has_init)
- {
- val = log(val);
- has_init = true;
- }
- return val;
- }
- template <>
- inline mpfr_class log_min_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
- {
- static bool has_init = false;
- static mpfr_class val = max_value<mpfr_class>();
- if(!has_init)
- {
- val = log(val);
- has_init = true;
- }
- return val;
- }
- template <>
- inline mpfr_class epsilon<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
- {
- return ldexp(mpfr_class(1), 1-boost::math::policies::digits<mpfr_class, boost::math::policies::policy<> >());
- }
- } // namespace tools
- namespace policies{
- template <class T, class U, class Policy>
- struct evaluation<__gmp_expr<T, U>, Policy>
- {
- typedef mpfr_class type;
- };
- }
- template <class Policy>
- inline mpfr_class skewness(const extreme_value_distribution<mpfr_class, Policy>& /*dist*/)
- {
- //
- // This is 12 * sqrt(6) * zeta(3) / pi^3:
- // See http://mathworld.wolfram.com/ExtremeValueDistribution.html
- //
- #ifdef BOOST_MATH_STANDALONE
- static_assert(sizeof(Policy) == 0, "mpfr skewness can not be calculated in standalone mode");
- #endif
- return static_cast<mpfr_class>("1.1395470994046486574927930193898461120875997958366");
- }
- template <class Policy>
- inline mpfr_class skewness(const rayleigh_distribution<mpfr_class, Policy>& /*dist*/)
- {
- // using namespace boost::math::constants;
- #ifdef BOOST_MATH_STANDALONE
- static_assert(sizeof(Policy) == 0, "mpfr skewness can not be calculated in standalone mode");
- #endif
- return static_cast<mpfr_class>("0.63111065781893713819189935154422777984404221106391");
- // Computed using NTL at 150 bit, about 50 decimal digits.
- // return 2 * root_pi<RealType>() * pi_minus_three<RealType>() / pow23_four_minus_pi<RealType>();
- }
- template <class Policy>
- inline mpfr_class kurtosis(const rayleigh_distribution<mpfr_class, Policy>& /*dist*/)
- {
- // using namespace boost::math::constants;
- #ifdef BOOST_MATH_STANDALONE
- static_assert(sizeof(Policy) == 0, "mpfr kurtosis can not be calculated in standalone mode");
- #endif
- return static_cast<mpfr_class>("3.2450893006876380628486604106197544154170667057995");
- // Computed using NTL at 150 bit, about 50 decimal digits.
- // return 3 - (6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /
- // (four_minus_pi<RealType>() * four_minus_pi<RealType>());
- }
- template <class Policy>
- inline mpfr_class kurtosis_excess(const rayleigh_distribution<mpfr_class, Policy>& /*dist*/)
- {
- //using namespace boost::math::constants;
- // Computed using NTL at 150 bit, about 50 decimal digits.
- #ifdef BOOST_MATH_STANDALONE
- static_assert(sizeof(Policy) == 0, "mpfr excess kurtosis can not be calculated in standalone mode");
- #endif
- return static_cast<mpfr_class>("0.2450893006876380628486604106197544154170667057995");
- // return -(6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /
- // (four_minus_pi<RealType>() * four_minus_pi<RealType>());
- } // kurtosis
- namespace detail{
- //
- // Version of Digamma accurate to ~100 decimal digits.
- //
- template <class Policy>
- mpfr_class digamma_imp(mpfr_class x, const std::integral_constant<int, 0>* , const Policy& pol)
- {
- //
- // This handles reflection of negative arguments, and all our
- // empfr_classor handling, then forwards to the T-specific approximation.
- //
- BOOST_MATH_STD_USING // ADL of std functions.
- mpfr_class result = 0;
- //
- // Check for negative arguments and use reflection:
- //
- if(x < 0)
- {
- // Reflect:
- x = 1 - x;
- // Argument reduction for tan:
- mpfr_class remainder = x - floor(x);
- // Shift to negative if > 0.5:
- if(remainder > 0.5)
- {
- remainder -= 1;
- }
- //
- // check for evaluation at a negative pole:
- //
- if(remainder == 0)
- {
- return policies::raise_pole_error<mpfr_class>("boost::math::digamma<%1%>(%1%)", nullptr, (1-x), pol);
- }
- result = constants::pi<mpfr_class>() / tan(constants::pi<mpfr_class>() * remainder);
- }
- result += big_digamma(x);
- return result;
- }
- //
- // Specialisations of this function provides the initial
- // starting guess for Halley iteration:
- //
- template <class Policy>
- inline mpfr_class erf_inv_imp(const mpfr_class& p, const mpfr_class& q, const Policy&, const std::integral_constant<int, 64>*)
- {
- BOOST_MATH_STD_USING // for ADL of std names.
- mpfr_class result = 0;
- if(p <= 0.5)
- {
- //
- // Evaluate inverse erf using the rational approximation:
- //
- // x = p(p+10)(Y+R(p))
- //
- // Where Y is a constant, and R(p) is optimised for a low
- // absolute empfr_classor compared to |Y|.
- //
- // double: Max empfr_classor found: 2.001849e-18
- // long double: Max empfr_classor found: 1.017064e-20
- // Maximum Deviation Found (actual empfr_classor term at infinite precision) 8.030e-21
- //
- static const float Y = 0.0891314744949340820313f;
- static const mpfr_class P[] = {
- -0.000508781949658280665617,
- -0.00836874819741736770379,
- 0.0334806625409744615033,
- -0.0126926147662974029034,
- -0.0365637971411762664006,
- 0.0219878681111168899165,
- 0.00822687874676915743155,
- -0.00538772965071242932965
- };
- static const mpfr_class Q[] = {
- 1,
- -0.970005043303290640362,
- -1.56574558234175846809,
- 1.56221558398423026363,
- 0.662328840472002992063,
- -0.71228902341542847553,
- -0.0527396382340099713954,
- 0.0795283687341571680018,
- -0.00233393759374190016776,
- 0.000886216390456424707504
- };
- mpfr_class g = p * (p + 10);
- mpfr_class r = tools::evaluate_polynomial(P, p) / tools::evaluate_polynomial(Q, p);
- result = g * Y + g * r;
- }
- else if(q >= 0.25)
- {
- //
- // Rational approximation for 0.5 > q >= 0.25
- //
- // x = sqrt(-2*log(q)) / (Y + R(q))
- //
- // Where Y is a constant, and R(q) is optimised for a low
- // absolute empfr_classor compared to Y.
- //
- // double : Max empfr_classor found: 7.403372e-17
- // long double : Max empfr_classor found: 6.084616e-20
- // Maximum Deviation Found (empfr_classor term) 4.811e-20
- //
- static const float Y = 2.249481201171875f;
- static const mpfr_class P[] = {
- -0.202433508355938759655,
- 0.105264680699391713268,
- 8.37050328343119927838,
- 17.6447298408374015486,
- -18.8510648058714251895,
- -44.6382324441786960818,
- 17.445385985570866523,
- 21.1294655448340526258,
- -3.67192254707729348546
- };
- static const mpfr_class Q[] = {
- 1,
- 6.24264124854247537712,
- 3.9713437953343869095,
- -28.6608180499800029974,
- -20.1432634680485188801,
- 48.5609213108739935468,
- 10.8268667355460159008,
- -22.6436933413139721736,
- 1.72114765761200282724
- };
- mpfr_class g = sqrt(-2 * log(q));
- mpfr_class xs = q - 0.25;
- mpfr_class r = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
- result = g / (Y + r);
- }
- else
- {
- //
- // For q < 0.25 we have a series of rational approximations all
- // of the general form:
- //
- // let: x = sqrt(-log(q))
- //
- // Then the result is given by:
- //
- // x(Y+R(x-B))
- //
- // where Y is a constant, B is the lowest value of x for which
- // the approximation is valid, and R(x-B) is optimised for a low
- // absolute empfr_classor compared to Y.
- //
- // Note that almost all code will really go through the first
- // or maybe second approximation. After than we're dealing with very
- // small input values indeed: 80 and 128 bit long double's go all the
- // way down to ~ 1e-5000 so the "tail" is rather long...
- //
- mpfr_class x = sqrt(-log(q));
- if(x < 3)
- {
- // Max empfr_classor found: 1.089051e-20
- static const float Y = 0.807220458984375f;
- static const mpfr_class P[] = {
- -0.131102781679951906451,
- -0.163794047193317060787,
- 0.117030156341995252019,
- 0.387079738972604337464,
- 0.337785538912035898924,
- 0.142869534408157156766,
- 0.0290157910005329060432,
- 0.00214558995388805277169,
- -0.679465575181126350155e-6,
- 0.285225331782217055858e-7,
- -0.681149956853776992068e-9
- };
- static const mpfr_class Q[] = {
- 1,
- 3.46625407242567245975,
- 5.38168345707006855425,
- 4.77846592945843778382,
- 2.59301921623620271374,
- 0.848854343457902036425,
- 0.152264338295331783612,
- 0.01105924229346489121
- };
- mpfr_class xs = x - 1.125;
- mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
- result = Y * x + R * x;
- }
- else if(x < 6)
- {
- // Max empfr_classor found: 8.389174e-21
- static const float Y = 0.93995571136474609375f;
- static const mpfr_class P[] = {
- -0.0350353787183177984712,
- -0.00222426529213447927281,
- 0.0185573306514231072324,
- 0.00950804701325919603619,
- 0.00187123492819559223345,
- 0.000157544617424960554631,
- 0.460469890584317994083e-5,
- -0.230404776911882601748e-9,
- 0.266339227425782031962e-11
- };
- static const mpfr_class Q[] = {
- 1,
- 1.3653349817554063097,
- 0.762059164553623404043,
- 0.220091105764131249824,
- 0.0341589143670947727934,
- 0.00263861676657015992959,
- 0.764675292302794483503e-4
- };
- mpfr_class xs = x - 3;
- mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
- result = Y * x + R * x;
- }
- else if(x < 18)
- {
- // Max empfr_classor found: 1.481312e-19
- static const float Y = 0.98362827301025390625f;
- static const mpfr_class P[] = {
- -0.0167431005076633737133,
- -0.00112951438745580278863,
- 0.00105628862152492910091,
- 0.000209386317487588078668,
- 0.149624783758342370182e-4,
- 0.449696789927706453732e-6,
- 0.462596163522878599135e-8,
- -0.281128735628831791805e-13,
- 0.99055709973310326855e-16
- };
- static const mpfr_class Q[] = {
- 1,
- 0.591429344886417493481,
- 0.138151865749083321638,
- 0.0160746087093676504695,
- 0.000964011807005165528527,
- 0.275335474764726041141e-4,
- 0.282243172016108031869e-6
- };
- mpfr_class xs = x - 6;
- mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
- result = Y * x + R * x;
- }
- else if(x < 44)
- {
- // Max empfr_classor found: 5.697761e-20
- static const float Y = 0.99714565277099609375f;
- static const mpfr_class P[] = {
- -0.0024978212791898131227,
- -0.779190719229053954292e-5,
- 0.254723037413027451751e-4,
- 0.162397777342510920873e-5,
- 0.396341011304801168516e-7,
- 0.411632831190944208473e-9,
- 0.145596286718675035587e-11,
- -0.116765012397184275695e-17
- };
- static const mpfr_class Q[] = {
- 1,
- 0.207123112214422517181,
- 0.0169410838120975906478,
- 0.000690538265622684595676,
- 0.145007359818232637924e-4,
- 0.144437756628144157666e-6,
- 0.509761276599778486139e-9
- };
- mpfr_class xs = x - 18;
- mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
- result = Y * x + R * x;
- }
- else
- {
- // Max empfr_classor found: 1.279746e-20
- static const float Y = 0.99941349029541015625f;
- static const mpfr_class P[] = {
- -0.000539042911019078575891,
- -0.28398759004727721098e-6,
- 0.899465114892291446442e-6,
- 0.229345859265920864296e-7,
- 0.225561444863500149219e-9,
- 0.947846627503022684216e-12,
- 0.135880130108924861008e-14,
- -0.348890393399948882918e-21
- };
- static const mpfr_class Q[] = {
- 1,
- 0.0845746234001899436914,
- 0.00282092984726264681981,
- 0.468292921940894236786e-4,
- 0.399968812193862100054e-6,
- 0.161809290887904476097e-8,
- 0.231558608310259605225e-11
- };
- mpfr_class xs = x - 44;
- mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
- result = Y * x + R * x;
- }
- }
- return result;
- }
- inline mpfr_class bessel_i0(mpfr_class x)
- {
- #ifdef BOOST_MATH_STANDALONE
- static_assert(sizeof(x) == 0, "mpfr bessel_i0 can not be calculated in standalone mode");
- #endif
- static const mpfr_class P1[] = {
- static_cast<mpfr_class>("-2.2335582639474375249e+15"),
- static_cast<mpfr_class>("-5.5050369673018427753e+14"),
- static_cast<mpfr_class>("-3.2940087627407749166e+13"),
- static_cast<mpfr_class>("-8.4925101247114157499e+11"),
- static_cast<mpfr_class>("-1.1912746104985237192e+10"),
- static_cast<mpfr_class>("-1.0313066708737980747e+08"),
- static_cast<mpfr_class>("-5.9545626019847898221e+05"),
- static_cast<mpfr_class>("-2.4125195876041896775e+03"),
- static_cast<mpfr_class>("-7.0935347449210549190e+00"),
- static_cast<mpfr_class>("-1.5453977791786851041e-02"),
- static_cast<mpfr_class>("-2.5172644670688975051e-05"),
- static_cast<mpfr_class>("-3.0517226450451067446e-08"),
- static_cast<mpfr_class>("-2.6843448573468483278e-11"),
- static_cast<mpfr_class>("-1.5982226675653184646e-14"),
- static_cast<mpfr_class>("-5.2487866627945699800e-18"),
- };
- static const mpfr_class Q1[] = {
- static_cast<mpfr_class>("-2.2335582639474375245e+15"),
- static_cast<mpfr_class>("7.8858692566751002988e+12"),
- static_cast<mpfr_class>("-1.2207067397808979846e+10"),
- static_cast<mpfr_class>("1.0377081058062166144e+07"),
- static_cast<mpfr_class>("-4.8527560179962773045e+03"),
- static_cast<mpfr_class>("1.0"),
- };
- static const mpfr_class P2[] = {
- static_cast<mpfr_class>("-2.2210262233306573296e-04"),
- static_cast<mpfr_class>("1.3067392038106924055e-02"),
- static_cast<mpfr_class>("-4.4700805721174453923e-01"),
- static_cast<mpfr_class>("5.5674518371240761397e+00"),
- static_cast<mpfr_class>("-2.3517945679239481621e+01"),
- static_cast<mpfr_class>("3.1611322818701131207e+01"),
- static_cast<mpfr_class>("-9.6090021968656180000e+00"),
- };
- static const mpfr_class Q2[] = {
- static_cast<mpfr_class>("-5.5194330231005480228e-04"),
- static_cast<mpfr_class>("3.2547697594819615062e-02"),
- static_cast<mpfr_class>("-1.1151759188741312645e+00"),
- static_cast<mpfr_class>("1.3982595353892851542e+01"),
- static_cast<mpfr_class>("-6.0228002066743340583e+01"),
- static_cast<mpfr_class>("8.5539563258012929600e+01"),
- static_cast<mpfr_class>("-3.1446690275135491500e+01"),
- static_cast<mpfr_class>("1.0"),
- };
- mpfr_class value, factor, r;
- BOOST_MATH_STD_USING
- using namespace boost::math::tools;
- if (x < 0)
- {
- x = -x; // even function
- }
- if (x == 0)
- {
- return static_cast<mpfr_class>(1);
- }
- if (x <= 15) // x in (0, 15]
- {
- mpfr_class y = x * x;
- value = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
- }
- else // x in (15, \infty)
- {
- mpfr_class y = 1 / x - mpfr_class(1) / 15;
- r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
- factor = exp(x) / sqrt(x);
- value = factor * r;
- }
- return value;
- }
- inline mpfr_class bessel_i1(mpfr_class x)
- {
- static const mpfr_class P1[] = {
- static_cast<mpfr_class>("-1.4577180278143463643e+15"),
- static_cast<mpfr_class>("-1.7732037840791591320e+14"),
- static_cast<mpfr_class>("-6.9876779648010090070e+12"),
- static_cast<mpfr_class>("-1.3357437682275493024e+11"),
- static_cast<mpfr_class>("-1.4828267606612366099e+09"),
- static_cast<mpfr_class>("-1.0588550724769347106e+07"),
- static_cast<mpfr_class>("-5.1894091982308017540e+04"),
- static_cast<mpfr_class>("-1.8225946631657315931e+02"),
- static_cast<mpfr_class>("-4.7207090827310162436e-01"),
- static_cast<mpfr_class>("-9.1746443287817501309e-04"),
- static_cast<mpfr_class>("-1.3466829827635152875e-06"),
- static_cast<mpfr_class>("-1.4831904935994647675e-09"),
- static_cast<mpfr_class>("-1.1928788903603238754e-12"),
- static_cast<mpfr_class>("-6.5245515583151902910e-16"),
- static_cast<mpfr_class>("-1.9705291802535139930e-19"),
- };
- static const mpfr_class Q1[] = {
- static_cast<mpfr_class>("-2.9154360556286927285e+15"),
- static_cast<mpfr_class>("9.7887501377547640438e+12"),
- static_cast<mpfr_class>("-1.4386907088588283434e+10"),
- static_cast<mpfr_class>("1.1594225856856884006e+07"),
- static_cast<mpfr_class>("-5.1326864679904189920e+03"),
- static_cast<mpfr_class>("1.0"),
- };
- static const mpfr_class P2[] = {
- static_cast<mpfr_class>("1.4582087408985668208e-05"),
- static_cast<mpfr_class>("-8.9359825138577646443e-04"),
- static_cast<mpfr_class>("2.9204895411257790122e-02"),
- static_cast<mpfr_class>("-3.4198728018058047439e-01"),
- static_cast<mpfr_class>("1.3960118277609544334e+00"),
- static_cast<mpfr_class>("-1.9746376087200685843e+00"),
- static_cast<mpfr_class>("8.5591872901933459000e-01"),
- static_cast<mpfr_class>("-6.0437159056137599999e-02"),
- };
- static const mpfr_class Q2[] = {
- static_cast<mpfr_class>("3.7510433111922824643e-05"),
- static_cast<mpfr_class>("-2.2835624489492512649e-03"),
- static_cast<mpfr_class>("7.4212010813186530069e-02"),
- static_cast<mpfr_class>("-8.5017476463217924408e-01"),
- static_cast<mpfr_class>("3.2593714889036996297e+00"),
- static_cast<mpfr_class>("-3.8806586721556593450e+00"),
- static_cast<mpfr_class>("1.0"),
- };
- mpfr_class value, factor, r, w;
- BOOST_MATH_STD_USING
- using namespace boost::math::tools;
- w = abs(x);
- if (x == 0)
- {
- return static_cast<mpfr_class>(0);
- }
- if (w <= 15) // w in (0, 15]
- {
- mpfr_class y = x * x;
- r = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
- factor = w;
- value = factor * r;
- }
- else // w in (15, \infty)
- {
- mpfr_class y = 1 / w - mpfr_class(1) / 15;
- r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
- factor = exp(w) / sqrt(w);
- value = factor * r;
- }
- if (x < 0)
- {
- value *= -value; // odd function
- }
- return value;
- }
- } // namespace detail
- }
- template<> struct std::is_convertible<long double, mpfr_class> : public std::false_type{};
- }
- #endif // BOOST_MATH_MPLFR_BINDINGS_HPP
|