1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253 |
- /*
- * (C) Copyright Nick Thompson 2018.
- * Use, modification and distribution are subject to the
- * Boost Software License, Version 1.0. (See accompanying file
- * LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt)
- */
- #ifndef BOOST_INTEGER_MOD_INVERSE_HPP
- #define BOOST_INTEGER_MOD_INVERSE_HPP
- #include <stdexcept>
- #include <boost/throw_exception.hpp>
- #include <boost/integer/extended_euclidean.hpp>
- namespace boost { namespace integer {
- // From "The Joy of Factoring", Algorithm 2.7.
- // Here's some others names I've found for this function:
- // PowerMod[a, -1, m] (Mathematica)
- // mpz_invert (gmplib)
- // modinv (some dude on stackoverflow)
- // Would mod_inverse be sometimes mistaken as the modular *additive* inverse?
- // In any case, I think this is the best name we can get for this function without agonizing.
- template<class Z>
- Z mod_inverse(Z a, Z modulus)
- {
- if (modulus < Z(2))
- {
- BOOST_THROW_EXCEPTION(std::domain_error("mod_inverse: modulus must be > 1"));
- }
- // make sure a < modulus:
- a = a % modulus;
- if (a == Z(0))
- {
- // a doesn't have a modular multiplicative inverse:
- return Z(0);
- }
- boost::integer::euclidean_result_t<Z> u = boost::integer::extended_euclidean(a, modulus);
- if (u.gcd > Z(1))
- {
- return Z(0);
- }
- // x might not be in the range 0 < x < m, let's fix that:
- while (u.x <= Z(0))
- {
- u.x += modulus;
- }
- // While indeed this is an inexpensive and comforting check,
- // the multiplication overflows and hence makes the check itself buggy.
- //BOOST_ASSERT(u.x*a % modulus == 1);
- return u.x;
- }
- }}
- #endif
|