123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688 |
- // Copyright 2004 The Trustees of Indiana University.
- // Distributed under the Boost Software License, Version 1.0.
- // (See accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- // Authors: Douglas Gregor
- // Andrew Lumsdaine
- #ifndef BOOST_GRAPH_KAMADA_KAWAI_SPRING_LAYOUT_HPP
- #define BOOST_GRAPH_KAMADA_KAWAI_SPRING_LAYOUT_HPP
- #include <boost/graph/graph_traits.hpp>
- #include <boost/graph/topology.hpp>
- #include <boost/graph/iteration_macros.hpp>
- #include <boost/graph/johnson_all_pairs_shortest.hpp>
- #include <boost/type_traits/is_convertible.hpp>
- #include <utility>
- #include <iterator>
- #include <vector>
- #include <iostream>
- #include <boost/limits.hpp>
- #include <boost/config/no_tr1/cmath.hpp>
- namespace boost
- {
- namespace detail
- {
- namespace graph
- {
- /**
- * Denotes an edge or display area side length used to scale a
- * Kamada-Kawai drawing.
- */
- template < bool Edge, typename T > struct edge_or_side
- {
- explicit edge_or_side(T value) : value(value) {}
- T value;
- };
- /**
- * Compute the edge length from an edge length. This is trivial.
- */
- template < typename Graph, typename DistanceMap, typename IndexMap,
- typename T >
- T compute_edge_length(
- const Graph&, DistanceMap, IndexMap, edge_or_side< true, T > length)
- {
- return length.value;
- }
- /**
- * Compute the edge length based on the display area side
- length. We do this by dividing the side length by the largest
- shortest distance between any two vertices in the graph.
- */
- template < typename Graph, typename DistanceMap, typename IndexMap,
- typename T >
- T compute_edge_length(const Graph& g, DistanceMap distance,
- IndexMap index, edge_or_side< false, T > length)
- {
- T result(0);
- typedef
- typename graph_traits< Graph >::vertex_iterator vertex_iterator;
- for (vertex_iterator ui = vertices(g).first,
- end = vertices(g).second;
- ui != end; ++ui)
- {
- vertex_iterator vi = ui;
- for (++vi; vi != end; ++vi)
- {
- T dij = distance[get(index, *ui)][get(index, *vi)];
- if (dij > result)
- result = dij;
- }
- }
- return length.value / result;
- }
- /**
- * Dense linear solver for fixed-size matrices.
- */
- template < std::size_t Size > struct linear_solver
- {
- // Indices in mat are (row, column)
- // template <typename Vec>
- // static Vec solve(double mat[Size][Size], Vec rhs);
- };
- template <> struct linear_solver< 1 >
- {
- template < typename Vec >
- static Vec solve(double mat[1][1], Vec rhs)
- {
- return rhs / mat[0][0];
- }
- };
- // These are from http://en.wikipedia.org/wiki/Cramer%27s_rule
- template <> struct linear_solver< 2 >
- {
- template < typename Vec >
- static Vec solve(double mat[2][2], Vec rhs)
- {
- double denom = mat[0][0] * mat[1][1] - mat[1][0] * mat[0][1];
- double x_num = rhs[0] * mat[1][1] - rhs[1] * mat[0][1];
- double y_num = mat[0][0] * rhs[1] - mat[1][0] * rhs[0];
- Vec result;
- result[0] = x_num / denom;
- result[1] = y_num / denom;
- return result;
- }
- };
- template <> struct linear_solver< 3 >
- {
- template < typename Vec >
- static Vec solve(double mat[3][3], Vec rhs)
- {
- double denom = mat[0][0]
- * (mat[1][1] * mat[2][2] - mat[2][1] * mat[1][2])
- - mat[1][0]
- * (mat[0][1] * mat[2][2] - mat[2][1] * mat[0][2])
- + mat[2][0]
- * (mat[0][1] * mat[1][2] - mat[1][1] * mat[0][2]);
- double x_num
- = rhs[0] * (mat[1][1] * mat[2][2] - mat[2][1] * mat[1][2])
- - rhs[1] * (mat[0][1] * mat[2][2] - mat[2][1] * mat[0][2])
- + rhs[2] * (mat[0][1] * mat[1][2] - mat[1][1] * mat[0][2]);
- double y_num
- = mat[0][0] * (rhs[1] * mat[2][2] - rhs[2] * mat[1][2])
- - mat[1][0] * (rhs[0] * mat[2][2] - rhs[2] * mat[0][2])
- + mat[2][0] * (rhs[0] * mat[1][2] - rhs[1] * mat[0][2]);
- double z_num
- = mat[0][0] * (mat[1][1] * rhs[2] - mat[2][1] * rhs[1])
- - mat[1][0] * (mat[0][1] * rhs[2] - mat[2][1] * rhs[0])
- + mat[2][0] * (mat[0][1] * rhs[1] - mat[1][1] * rhs[0]);
- Vec result;
- result[0] = x_num / denom;
- result[1] = y_num / denom;
- result[2] = z_num / denom;
- return result;
- }
- };
- /**
- * Implementation of the Kamada-Kawai spring layout algorithm.
- */
- template < typename Topology, typename Graph, typename PositionMap,
- typename WeightMap, typename EdgeOrSideLength, typename Done,
- typename VertexIndexMap, typename DistanceMatrix,
- typename SpringStrengthMatrix, typename PartialDerivativeMap >
- struct kamada_kawai_spring_layout_impl
- {
- typedef
- typename property_traits< WeightMap >::value_type weight_type;
- typedef typename Topology::point_type Point;
- typedef
- typename Topology::point_difference_type point_difference_type;
- typedef point_difference_type deriv_type;
- typedef
- typename graph_traits< Graph >::vertex_iterator vertex_iterator;
- typedef typename graph_traits< Graph >::vertex_descriptor
- vertex_descriptor;
- kamada_kawai_spring_layout_impl(const Topology& topology,
- const Graph& g, PositionMap position, WeightMap weight,
- EdgeOrSideLength edge_or_side_length, Done done,
- weight_type spring_constant, VertexIndexMap index,
- DistanceMatrix distance, SpringStrengthMatrix spring_strength,
- PartialDerivativeMap partial_derivatives)
- : topology(topology)
- , g(g)
- , position(position)
- , weight(weight)
- , edge_or_side_length(edge_or_side_length)
- , done(done)
- , spring_constant(spring_constant)
- , index(index)
- , distance(distance)
- , spring_strength(spring_strength)
- , partial_derivatives(partial_derivatives)
- {
- }
- // Compute contribution of vertex i to the first partial
- // derivatives (dE/dx_m, dE/dy_m) (for vertex m)
- deriv_type compute_partial_derivative(
- vertex_descriptor m, vertex_descriptor i)
- {
- #ifndef BOOST_NO_STDC_NAMESPACE
- using std::sqrt;
- #endif // BOOST_NO_STDC_NAMESPACE
- deriv_type result;
- if (i != m)
- {
- point_difference_type diff
- = topology.difference(position[m], position[i]);
- weight_type dist = topology.norm(diff);
- result = spring_strength[get(index, m)][get(index, i)]
- * (diff
- - distance[get(index, m)][get(index, i)] / dist
- * diff);
- }
- return result;
- }
- // Compute partial derivatives dE/dx_m and dE/dy_m
- deriv_type compute_partial_derivatives(vertex_descriptor m)
- {
- #ifndef BOOST_NO_STDC_NAMESPACE
- using std::sqrt;
- #endif // BOOST_NO_STDC_NAMESPACE
- deriv_type result;
- // TBD: looks like an accumulate to me
- BGL_FORALL_VERTICES_T(i, g, Graph)
- {
- deriv_type deriv = compute_partial_derivative(m, i);
- result += deriv;
- }
- return result;
- }
- // The actual Kamada-Kawai spring layout algorithm implementation
- bool run()
- {
- #ifndef BOOST_NO_STDC_NAMESPACE
- using std::sqrt;
- #endif // BOOST_NO_STDC_NAMESPACE
- // Compute d_{ij} and place it in the distance matrix
- if (!johnson_all_pairs_shortest_paths(
- g, distance, index, weight, weight_type(0)))
- return false;
- // Compute L based on side length (if needed), or retrieve L
- weight_type edge_length = detail::graph::compute_edge_length(
- g, distance, index, edge_or_side_length);
- // std::cerr << "edge_length = " << edge_length << std::endl;
- // Compute l_{ij} and k_{ij}
- const weight_type K = spring_constant;
- vertex_iterator ui, end;
- for (ui = vertices(g).first, end = vertices(g).second;
- ui != end; ++ui)
- {
- vertex_iterator vi = ui;
- for (++vi; vi != end; ++vi)
- {
- weight_type dij
- = distance[get(index, *ui)][get(index, *vi)];
- if (dij == (std::numeric_limits< weight_type >::max)())
- return false;
- distance[get(index, *ui)][get(index, *vi)]
- = edge_length * dij;
- distance[get(index, *vi)][get(index, *ui)]
- = edge_length * dij;
- spring_strength[get(index, *ui)][get(index, *vi)]
- = K / (dij * dij);
- spring_strength[get(index, *vi)][get(index, *ui)]
- = K / (dij * dij);
- }
- }
- // Compute Delta_i and find max
- vertex_descriptor p = *vertices(g).first;
- weight_type delta_p(0);
- for (ui = vertices(g).first, end = vertices(g).second;
- ui != end; ++ui)
- {
- deriv_type deriv = compute_partial_derivatives(*ui);
- put(partial_derivatives, *ui, deriv);
- weight_type delta = topology.norm(deriv);
- if (delta > delta_p)
- {
- p = *ui;
- delta_p = delta;
- }
- }
- while (!done(delta_p, p, g, true))
- {
- // The contribution p makes to the partial derivatives of
- // each vertex. Computing this (at O(n) cost) allows us to
- // update the delta_i values in O(n) time instead of O(n^2)
- // time.
- std::vector< deriv_type > p_partials(num_vertices(g));
- for (ui = vertices(g).first, end = vertices(g).second;
- ui != end; ++ui)
- {
- vertex_descriptor i = *ui;
- p_partials[get(index, i)]
- = compute_partial_derivative(i, p);
- }
- do
- {
- // For debugging, compute the energy value E
- double E = 0.;
- for (ui = vertices(g).first, end = vertices(g).second;
- ui != end; ++ui)
- {
- vertex_iterator vi = ui;
- for (++vi; vi != end; ++vi)
- {
- double dist = topology.distance(
- position[*ui], position[*vi]);
- weight_type k_ij = spring_strength[get(
- index, *ui)][get(index, *vi)];
- weight_type l_ij = distance[get(index, *ui)]
- [get(index, *vi)];
- E += .5 * k_ij * (dist - l_ij) * (dist - l_ij);
- }
- }
- // std::cerr << "E = " << E << std::endl;
- // Compute the elements of the Jacobian
- // From
- // http://www.cs.panam.edu/~rfowler/papers/1994_kumar_fowler_A_Spring_UTPACSTR.pdf
- // with the bugs fixed in the off-diagonal case
- weight_type dE_d_d[Point::dimensions]
- [Point::dimensions];
- for (std::size_t i = 0; i < Point::dimensions; ++i)
- for (std::size_t j = 0; j < Point::dimensions; ++j)
- dE_d_d[i][j] = 0.;
- for (ui = vertices(g).first, end = vertices(g).second;
- ui != end; ++ui)
- {
- vertex_descriptor i = *ui;
- if (i != p)
- {
- point_difference_type diff
- = topology.difference(
- position[p], position[i]);
- weight_type dist = topology.norm(diff);
- weight_type dist_squared = dist * dist;
- weight_type inv_dist_cubed
- = 1. / (dist_squared * dist);
- weight_type k_mi = spring_strength[get(
- index, p)][get(index, i)];
- weight_type l_mi
- = distance[get(index, p)][get(index, i)];
- for (std::size_t i = 0; i < Point::dimensions;
- ++i)
- {
- for (std::size_t j = 0;
- j < Point::dimensions; ++j)
- {
- if (i == j)
- {
- dE_d_d[i][i] += k_mi
- * (1
- + (l_mi
- * (diff[i] * diff[i]
- - dist_squared)
- * inv_dist_cubed));
- }
- else
- {
- dE_d_d[i][j] += k_mi * l_mi
- * diff[i] * diff[j]
- * inv_dist_cubed;
- // dE_d_d[i][j] += k_mi * l_mi *
- // sqrt(hypot(diff[i], diff[j])) *
- // inv_dist_cubed;
- }
- }
- }
- }
- }
- deriv_type dE_d = get(partial_derivatives, p);
- // Solve dE_d_d * delta = -dE_d to get delta
- point_difference_type delta
- = -linear_solver< Point::dimensions >::solve(
- dE_d_d, dE_d);
- // Move p by delta
- position[p] = topology.adjust(position[p], delta);
- // Recompute partial derivatives and delta_p
- deriv_type deriv = compute_partial_derivatives(p);
- put(partial_derivatives, p, deriv);
- delta_p = topology.norm(deriv);
- } while (!done(delta_p, p, g, false));
- // Select new p by updating each partial derivative and
- // delta
- vertex_descriptor old_p = p;
- for (ui = vertices(g).first, end = vertices(g).second;
- ui != end; ++ui)
- {
- deriv_type old_deriv_p = p_partials[get(index, *ui)];
- deriv_type old_p_partial
- = compute_partial_derivative(*ui, old_p);
- deriv_type deriv = get(partial_derivatives, *ui);
- deriv += old_p_partial - old_deriv_p;
- put(partial_derivatives, *ui, deriv);
- weight_type delta = topology.norm(deriv);
- if (delta > delta_p)
- {
- p = *ui;
- delta_p = delta;
- }
- }
- }
- return true;
- }
- const Topology& topology;
- const Graph& g;
- PositionMap position;
- WeightMap weight;
- EdgeOrSideLength edge_or_side_length;
- Done done;
- weight_type spring_constant;
- VertexIndexMap index;
- DistanceMatrix distance;
- SpringStrengthMatrix spring_strength;
- PartialDerivativeMap partial_derivatives;
- };
- }
- } // end namespace detail::graph
- /// States that the given quantity is an edge length.
- template < typename T >
- inline detail::graph::edge_or_side< true, T > edge_length(T x)
- {
- return detail::graph::edge_or_side< true, T >(x);
- }
- /// States that the given quantity is a display area side length.
- template < typename T >
- inline detail::graph::edge_or_side< false, T > side_length(T x)
- {
- return detail::graph::edge_or_side< false, T >(x);
- }
- /**
- * \brief Determines when to terminate layout of a particular graph based
- * on a given relative tolerance.
- */
- template < typename T = double > struct layout_tolerance
- {
- layout_tolerance(const T& tolerance = T(0.001))
- : tolerance(tolerance)
- , last_energy((std::numeric_limits< T >::max)())
- , last_local_energy((std::numeric_limits< T >::max)())
- {
- }
- template < typename Graph >
- bool operator()(T delta_p,
- typename boost::graph_traits< Graph >::vertex_descriptor p,
- const Graph& g, bool global)
- {
- if (global)
- {
- if (last_energy == (std::numeric_limits< T >::max)())
- {
- last_energy = delta_p;
- return false;
- }
- T diff = last_energy - delta_p;
- if (diff < T(0))
- diff = -diff;
- bool done = (delta_p == T(0) || diff / last_energy < tolerance);
- last_energy = delta_p;
- return done;
- }
- else
- {
- if (last_local_energy == (std::numeric_limits< T >::max)())
- {
- last_local_energy = delta_p;
- return delta_p == T(0);
- }
- T diff = last_local_energy - delta_p;
- bool done
- = (delta_p == T(0) || (diff / last_local_energy) < tolerance);
- last_local_energy = delta_p;
- return done;
- }
- }
- private:
- T tolerance;
- T last_energy;
- T last_local_energy;
- };
- /** \brief Kamada-Kawai spring layout for undirected graphs.
- *
- * This algorithm performs graph layout (in two dimensions) for
- * connected, undirected graphs. It operates by relating the layout
- * of graphs to a dynamic spring system and minimizing the energy
- * within that system. The strength of a spring between two vertices
- * is inversely proportional to the square of the shortest distance
- * (in graph terms) between those two vertices. Essentially,
- * vertices that are closer in the graph-theoretic sense (i.e., by
- * following edges) will have stronger springs and will therefore be
- * placed closer together.
- *
- * Prior to invoking this algorithm, it is recommended that the
- * vertices be placed along the vertices of a regular n-sided
- * polygon.
- *
- * \param g (IN) must be a model of Vertex List Graph, Edge List
- * Graph, and Incidence Graph and must be undirected.
- *
- * \param position (OUT) must be a model of Lvalue Property Map,
- * where the value type is a class containing fields @c x and @c y
- * that will be set to the @c x and @c y coordinates of each vertex.
- *
- * \param weight (IN) must be a model of Readable Property Map,
- * which provides the weight of each edge in the graph @p g.
- *
- * \param topology (IN) must be a topology object (see topology.hpp),
- * which provides operations on points and differences between them.
- *
- * \param edge_or_side_length (IN) provides either the unit length
- * @c e of an edge in the layout or the length of a side @c s of the
- * display area, and must be either @c boost::edge_length(e) or @c
- * boost::side_length(s), respectively.
- *
- * \param done (IN) is a 4-argument function object that is passed
- * the current value of delta_p (i.e., the energy of vertex @p p),
- * the vertex @p p, the graph @p g, and a boolean flag indicating
- * whether @p delta_p is the maximum energy in the system (when @c
- * true) or the energy of the vertex being moved. Defaults to @c
- * layout_tolerance instantiated over the value type of the weight
- * map.
- *
- * \param spring_constant (IN) is the constant multiplied by each
- * spring's strength. Larger values create systems with more energy
- * that can take longer to stabilize; smaller values create systems
- * with less energy that stabilize quickly but do not necessarily
- * result in pleasing layouts. The default value is 1.
- *
- * \param index (IN) is a mapping from vertices to index values
- * between 0 and @c num_vertices(g). The default is @c
- * get(vertex_index,g).
- *
- * \param distance (UTIL/OUT) will be used to store the distance
- * from every vertex to every other vertex, which is computed in the
- * first stages of the algorithm. This value's type must be a model
- * of BasicMatrix with value type equal to the value type of the
- * weight map. The default is a vector of vectors.
- *
- * \param spring_strength (UTIL/OUT) will be used to store the
- * strength of the spring between every pair of vertices. This
- * value's type must be a model of BasicMatrix with value type equal
- * to the value type of the weight map. The default is a vector of
- * vectors.
- *
- * \param partial_derivatives (UTIL) will be used to store the
- * partial derivates of each vertex with respect to the @c x and @c
- * y coordinates. This must be a Read/Write Property Map whose value
- * type is a pair with both types equivalent to the value type of
- * the weight map. The default is an iterator property map.
- *
- * \returns @c true if layout was successful or @c false if a
- * negative weight cycle was detected.
- */
- template < typename Topology, typename Graph, typename PositionMap,
- typename WeightMap, typename T, bool EdgeOrSideLength, typename Done,
- typename VertexIndexMap, typename DistanceMatrix,
- typename SpringStrengthMatrix, typename PartialDerivativeMap >
- bool kamada_kawai_spring_layout(const Graph& g, PositionMap position,
- WeightMap weight, const Topology& topology,
- detail::graph::edge_or_side< EdgeOrSideLength, T > edge_or_side_length,
- Done done,
- typename property_traits< WeightMap >::value_type spring_constant,
- VertexIndexMap index, DistanceMatrix distance,
- SpringStrengthMatrix spring_strength,
- PartialDerivativeMap partial_derivatives)
- {
- BOOST_STATIC_ASSERT(
- (is_convertible< typename graph_traits< Graph >::directed_category*,
- undirected_tag* >::value));
- detail::graph::kamada_kawai_spring_layout_impl< Topology, Graph,
- PositionMap, WeightMap,
- detail::graph::edge_or_side< EdgeOrSideLength, T >, Done,
- VertexIndexMap, DistanceMatrix, SpringStrengthMatrix,
- PartialDerivativeMap >
- alg(topology, g, position, weight, edge_or_side_length, done,
- spring_constant, index, distance, spring_strength,
- partial_derivatives);
- return alg.run();
- }
- /**
- * \overload
- */
- template < typename Topology, typename Graph, typename PositionMap,
- typename WeightMap, typename T, bool EdgeOrSideLength, typename Done,
- typename VertexIndexMap >
- bool kamada_kawai_spring_layout(const Graph& g, PositionMap position,
- WeightMap weight, const Topology& topology,
- detail::graph::edge_or_side< EdgeOrSideLength, T > edge_or_side_length,
- Done done,
- typename property_traits< WeightMap >::value_type spring_constant,
- VertexIndexMap index)
- {
- typedef typename property_traits< WeightMap >::value_type weight_type;
- typename graph_traits< Graph >::vertices_size_type n = num_vertices(g);
- typedef std::vector< weight_type > weight_vec;
- std::vector< weight_vec > distance(n, weight_vec(n));
- std::vector< weight_vec > spring_strength(n, weight_vec(n));
- std::vector< typename Topology::point_difference_type > partial_derivatives(
- n);
- return kamada_kawai_spring_layout(g, position, weight, topology,
- edge_or_side_length, done, spring_constant, index, distance.begin(),
- spring_strength.begin(),
- make_iterator_property_map(partial_derivatives.begin(), index,
- typename Topology::point_difference_type()));
- }
- /**
- * \overload
- */
- template < typename Topology, typename Graph, typename PositionMap,
- typename WeightMap, typename T, bool EdgeOrSideLength, typename Done >
- bool kamada_kawai_spring_layout(const Graph& g, PositionMap position,
- WeightMap weight, const Topology& topology,
- detail::graph::edge_or_side< EdgeOrSideLength, T > edge_or_side_length,
- Done done,
- typename property_traits< WeightMap >::value_type spring_constant)
- {
- return kamada_kawai_spring_layout(g, position, weight, topology,
- edge_or_side_length, done, spring_constant, get(vertex_index, g));
- }
- /**
- * \overload
- */
- template < typename Topology, typename Graph, typename PositionMap,
- typename WeightMap, typename T, bool EdgeOrSideLength, typename Done >
- bool kamada_kawai_spring_layout(const Graph& g, PositionMap position,
- WeightMap weight, const Topology& topology,
- detail::graph::edge_or_side< EdgeOrSideLength, T > edge_or_side_length,
- Done done)
- {
- typedef typename property_traits< WeightMap >::value_type weight_type;
- return kamada_kawai_spring_layout(g, position, weight, topology,
- edge_or_side_length, done, weight_type(1));
- }
- /**
- * \overload
- */
- template < typename Topology, typename Graph, typename PositionMap,
- typename WeightMap, typename T, bool EdgeOrSideLength >
- bool kamada_kawai_spring_layout(const Graph& g, PositionMap position,
- WeightMap weight, const Topology& topology,
- detail::graph::edge_or_side< EdgeOrSideLength, T > edge_or_side_length)
- {
- typedef typename property_traits< WeightMap >::value_type weight_type;
- return kamada_kawai_spring_layout(g, position, weight, topology,
- edge_or_side_length, layout_tolerance< weight_type >(),
- weight_type(1.0), get(vertex_index, g));
- }
- } // end namespace boost
- #endif // BOOST_GRAPH_KAMADA_KAWAI_SPRING_LAYOUT_HPP
|