123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191 |
- // Boost.Geometry
- // Copyright (c) 2021, Oracle and/or its affiliates.
- // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
- // Licensed under the Boost Software License version 1.0.
- // http://www.boost.org/users/license.html
- #ifndef BOOST_GEOMETRY_STRATEGY_GEOGRAPHIC_AREA_BOX_HPP
- #define BOOST_GEOMETRY_STRATEGY_GEOGRAPHIC_AREA_BOX_HPP
- #include <boost/geometry/core/radian_access.hpp>
- #include <boost/geometry/srs/spheroid.hpp>
- #include <boost/geometry/strategies/spherical/get_radius.hpp>
- #include <boost/geometry/strategy/area.hpp>
- #include <boost/geometry/util/normalize_spheroidal_box_coordinates.hpp>
- namespace boost { namespace geometry
- {
- namespace strategy { namespace area
- {
- // Based on the approach for spherical coordinate system:
- // https://math.stackexchange.com/questions/131735/surface-element-in-spherical-coordinates
- // http://www.cs.cmu.edu/afs/cs/academic/class/16823-s16/www/pdfs/appearance-modeling-3.pdf
- // https://www.astronomyclub.xyz/celestial-sphere-2/solid-angle-on-the-celestial-sphere.html
- // https://mathworld.wolfram.com/SolidAngle.html
- // https://en.wikipedia.org/wiki/Spherical_coordinate_system
- // and equations for spheroid:
- // https://en.wikipedia.org/wiki/Geographic_coordinate_conversion
- // https://en.wikipedia.org/wiki/Meridian_arc
- // Note that the equations use geodetic latitudes so we do not have to convert them.
- // assume(y_max > y_min);
- // assume(x_max > x_min);
- // M: a*(1-e^2) / (1-e^2*sin(y)^2)^(3/2);
- // N: a / sqrt(1-e^2*sin(y)^2);
- // O: N*cos(y)*M;
- // tellsimp(log(abs(e*sin(y_min)+1)), p_min);
- // tellsimp(log(abs(e*sin(y_min)-1)), m_min);
- // tellsimp(log(abs(e*sin(y_max)+1)), p_max);
- // tellsimp(log(abs(e*sin(y_max)-1)), m_max);
- // S: integrate(integrate(O, y, y_min, y_max), x, x_min, x_max);
- // combine(S);
- //
- // An alternative solution to the above formula was suggested by Charles Karney
- // https://github.com/boostorg/geometry/pull/832
- // The following are formulas for area of a box defined by the equator and some latitude,
- // not arbitrary box.
- // For e^2 > 0
- // dlambda*b^2*sin(phi)/2*(1/(1-e^2*sin(phi)^2) + atanh(e*sin(phi))/(e*sin(phi)))
- // For e^2 < 0
- // dlambda*b^2*sin(phi)/2*(1/(1-e^2*sin(phi)^2) + atan(ea*sin(phi))/(ea*sin(phi)))
- // where ea = sqrt(-e^2)
- template
- <
- typename Spheroid = srs::spheroid<double>,
- typename CalculationType = void
- >
- class geographic_box
- {
- public:
- template <typename Box>
- struct result_type
- : strategy::area::detail::result_type
- <
- Box,
- CalculationType
- >
- {};
- geographic_box() = default;
- explicit geographic_box(Spheroid const& spheroid)
- : m_spheroid(spheroid)
- {}
- template <typename Box>
- inline auto apply(Box const& box) const
- {
- typedef typename result_type<Box>::type return_type;
- return_type const c0 = 0;
- return_type x_min = get_as_radian<min_corner, 0>(box); // lon
- return_type y_min = get_as_radian<min_corner, 1>(box); // lat
- return_type x_max = get_as_radian<max_corner, 0>(box);
- return_type y_max = get_as_radian<max_corner, 1>(box);
- math::normalize_spheroidal_box_coordinates<radian>(x_min, y_min, x_max, y_max);
- if (x_min == x_max || y_max == y_min)
- {
- return c0;
- }
- return_type const e2 = formula::eccentricity_sqr<return_type>(m_spheroid);
- return_type const x_diff = x_max - x_min;
- return_type const sin_y_min = sin(y_min);
- return_type const sin_y_max = sin(y_max);
- if (math::equals(e2, c0))
- {
- // spherical formula
- return_type const a = get_radius<0>(m_spheroid);
- return x_diff * (sin_y_max - sin_y_min) * a * a;
- }
- return_type const c1 = 1;
- return_type const c2 = 2;
- return_type const b = get_radius<2>(m_spheroid);
- /*
- return_type const c4 = 4;
- return_type const e = math::sqrt(e2);
- return_type const p_min = log(math::abs(e * sin_y_min + c1));
- return_type const p_max = log(math::abs(e * sin_y_max + c1));
- return_type const m_min = log(math::abs(e * sin_y_min - c1));
- return_type const m_max = log(math::abs(e * sin_y_max - c1));
- return_type const n_min = e * sin_y_min * sin_y_min;
- return_type const n_max = e * sin_y_max * sin_y_max;
- return_type const d_min = e * n_min - c1;
- return_type const d_max = e * n_max - c1;
- // NOTE: For equal latitudes the original formula generated by maxima may give negative
- // result. It's caused by the order of operations, so here they're rearranged for
- // symmetry.
- return_type const comp0 = (p_min - m_min) / (c4 * e * d_min);
- return_type const comp1 = sin_y_min / (c2 * d_min);
- return_type const comp2 = n_min * (m_min - p_min) / (c4 * d_min);
- return_type const comp3 = (p_max - m_max) / (c4 * e * d_max);
- return_type const comp4 = sin_y_max / (c2 * d_max);
- return_type const comp5 = n_max * (m_max - p_max) / (c4 * d_max);
- return_type const comp02 = comp0 + comp1 + comp2;
- return_type const comp35 = comp3 + comp4 + comp5;
- return b * b * x_diff * (comp02 - comp35);
- */
- return_type const comp0_min = c1 / (c1 - e2 * sin_y_min * sin_y_min);
- return_type const comp0_max = c1 / (c1 - e2 * sin_y_max * sin_y_max);
- // NOTE: For latitudes equal to 0 the original formula returns NAN
- return_type comp1_min = 0, comp1_max = 0;
- if (e2 > c0)
- {
- return_type const e = math::sqrt(e2);
- return_type const e_sin_y_min = e * sin_y_min;
- return_type const e_sin_y_max = e * sin_y_max;
- comp1_min = e_sin_y_min == c0 ? c1 : atanh(e_sin_y_min) / e_sin_y_min;
- comp1_max = e_sin_y_max == c0 ? c1 : atanh(e_sin_y_max) / e_sin_y_max;
- }
- else
- {
- return_type const ea = math::sqrt(-e2);
- return_type const ea_sin_y_min = ea * sin_y_min;
- return_type const ea_sin_y_max = ea * sin_y_max;
- comp1_min = ea_sin_y_min == c0 ? c1 : atan(ea_sin_y_min) / ea_sin_y_min;
- comp1_max = ea_sin_y_max == c0 ? c1 : atan(ea_sin_y_max) / ea_sin_y_max;
- }
- return_type const comp01_min = sin_y_min * (comp0_min + comp1_min);
- return_type const comp01_max = sin_y_max * (comp0_max + comp1_max);
- return b * b * x_diff * (comp01_max - comp01_min) / c2;
- }
- Spheroid model() const
- {
- return m_spheroid;
- }
- private:
- Spheroid m_spheroid;
- };
- }} // namespace strategy::area
- }} // namespace boost::geometry
- #endif // BOOST_GEOMETRY_STRATEGY_GEOGRAPHIC_AREA_BOX_HPP
|